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Abstract

This survey reviews recent developments in two-dimensional holography with a focus on the proposed

dualities between random matrix models and two-dimensional dilaton gravity theories. The models

considered are Jackiw-Teitelboim and N = 1 supersymmetric Cangemi-Jackiw gravities, which are

respectively locally hyperbolic and flat. Euclidean partition functions admit an expansion in the

Euler characteristic of the spacetime manifolds, which are matched order by order with the ’t Hooft

expansion of the matrix integrals. For both theories, an essential step in the computation of the bulk

partition function is a reformulation in terms of topological gauge theories, yielding one-loop exact

results through the Duistermaan-Heckman theorem. Matrix duals provide UV completions of the

gravitational theories, and observables non-perturbative in the genus expansion parameter can be

extracted through the method of orthogonal polynomials and Fredholm determinants. We conclude

with a discussion of open questions, and propose several future research directions.
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1 Introduction

Holography has been at the forefront of recent developments in many areas of theoretical physics

with applications ranging from condensed matter theory [1, 2] to the black hole information problem

[3, 4, 5, 6]. Its general form states that any CFT on R × Sd−1 is equivalent to quantum gravity

on asymptotically AdSd+1 ×M spacetime, where M is a compact manifold [7]. The special case of

two bulk dimensions takes a qualitatively different form. On the gravitational side one works with

asymptotically AdS geometries with an IR cutoff, the Euclidean dynamics of which is universally

given by Jackiw-Teitelboim (JT) gravity [8]. The gravitational path integral is organised in a sum

over hyperbolic surfaces of increasing genus, referred to as the genus expansion.

In a landmark result [9], it was shown that the JT path integral is equivalent to a matrix integral

of the form:

Z =

∫
dMe−N TrV (M). (1)

where M are random N × N Hermitian matrices, interpreted as the Hamiltonian of the boundary

theory dual to JT gravity. V (M) is the matrix potential, which is fine tuned to match with the

JT path integral. In an appropriate large N limit called the double scaling limit, the JT partition

function coincides with its random matrix counterpart to all orders in the genus expansion. The

same procedure has since been applied to find matrix duals to other two-dimensional theories [10,

11, 12, 13].

In section 2, we review the Euclidean gravitational path integral computation of [9], focusing on

the trousers decomposition of hyperbolic surfaces and the computation of the measure over boundary

fluctuations using a topological gauge theory formalism.

Section 3 introduces matrix integrals, showing how to recover the many-boundary JT partition

function as connected correlators of the matrix model. The rest of the section focuses on extracting

non-perturbative information using the method of orthogonal polynomials and Fredholm determi-

nants.

Section 4 explores a different two-dimensional gravity theory, called the (supersymmetric) Cangemi-

Jackiw model in [14], which is locally flat and has N = 1 supersymmetry. Its prominent feature is

a particularly simple matrix dual which is analytically exactly solvable.

To conclude, section 5 discusses open questions and future directions in the two-dimensional

gravity literature.
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2 JT partition function

JT gravity is defined by the Euclidean action [15, 16]

I = −S0

2π

[
1

2

∫
M

√
gR+

∫
∂M

√
hK

]
− 1

2

∫
M

√
gϕ(R+ 2)−

∫
∂M

√
hϕ(K − 1), (2)

where S0 is a constant, ϕ is the dilaton, K is the extrinsic curvature and M is the spacetime

manifold. The first two terms are the Einstein-Hilbert and the Gibbons-Hawking-York terms which

are topological in d = 2 and are equal to the Euler characteristic 2πχ of M. The next two terms

are non-trivial due to the dilaton.

M can have an arbitrary number of boundaries, along which the induced metric is fixed such

that each boundary has length βi/ϵ. The dilaton is fixed to ϕ = γ/ϵ along ∂M, where a choice of γ

is equivalent to a choice of units, and ϵ→ 0 is the holographic renormalization parameter.

2.1 Genus expansion

Following [9], decomposing the action as I = −S0χ(M) + IJT, the n-boundary Euclidean partition

function is written formally as

Z(β1, . . . , βn) =

∫
[dX]e−IJT[X]+S0χ(M), (3)

where the integral is over all fields X as well as over all manifolds M with n boundaries1 Schemat-

ically, enumerating two-dimensional manifolds by their genus, the path integral can be written as

Z(β1, . . . , βn) =

∞∑
g=0

(e−S0)2g+n−2Zg,n(β1, . . . , βn) + non-perturbative in e−S0 , (4)

where Zg,n are the restrictions of equation (3) to manifolds with genus g. Non-perturbative contri-

butions, such as terms of order ee
S0

are in general present. Such terms don’t have an immediate

geometric interpretation, it is possible that they are contributions from non-geometric phases of the

UV complete theory.

The dilaton appears as a Lagrange multiplier in the action. Integrating ϕ along an imaginary

contour fixes R = −2 and the genus expansion localizes on hyperbolic surfaces. Computing the

perturbative component of the partition function therefore reduces to evaluating

Zg,n(β1, . . . , βn) =

∫
[dg] exp

(∫
∂M

√
hϕ(K − 1)

)
. (5)

This is an integral over boundary fluctuations of the geometry and over the bulk moduli space,

counting the volume of distinct Riemann surfaces at given (g, n). The factorisation is made explicit

by introducing a genus-zero surface with an asymptotic boundary of renormalized length β and

a geodesic boundary of length b, called the trumpet geometry. Any (g, n) hyperbolic surface can

be constructed by gluing together a genus g hyperbolic surface with n geodesic boundaries and n

1It should be noted that it is not at all obvious that “a sum over all manifolds” is well defined. Within the context
of holography where spacetime itself is emergent, one would generally expect non-geometric contributions to the path
integral. Furthermore, in higher dimensions there exists no finite enumeration of surfaces according to their genus.
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trumpet geometries attached to each geodesic boundary.

Denote by Vg,n(b1, . . . , bn) the volume of the moduli space of genus g hyperbolic Riemann surfaces

with geodesic boundaries of lengths {b1, . . . , bn}. The path integral decomposes into

Zg,n(β1, . . . , βn) =

∫
dµ[b]Vg,n(b1, . . . , bn)

n∏
i=1

Ztrumpet(βi, bi), (6)

where dµ[b] accounts for twists and geodesic lengths associated with each gluing. This decomposition

holds for all (g, n) except for the two special cases of (0, 1) and (0, 2), which correspond to the

hyperbolic disk and the gluing of two trumpets:

Z0,1(β) = Zdisk(β), (7)

Z0,2(β1, β2) =

∫
dµ[b]Ztrumpet(β1, b)Ztrumpet(β2, b). (8)

The problem reduces to evaluating the disk and trumpet partition functions and the volumes Vg,n.

The disk and trumpet geometries are given by the metrics

g =

dρ⊗ dρ+ sinh2(ρ) dθ ⊗ dθ disk,

dρ⊗ dρ+ cosh2(ρ)dτ ⊗ dτ trumpet,
(9)

where ρ ∈ R+ is a radial coordinate, and θ ∼ θ + 2π and τ ∼ τ + b. The parameter b labels the

length of the geodesic boundary of the cylinder. Boundary actions depend only on θ and τ , and the

resulting partition functions read

Zdisk(β) =

∫
dµ[θ]

SL(2,R)
exp

{
−γ
2

∫ β

0

du

[(
θ′′

θ′

)2

− (θ′)
2

]}
, (10)

Ztrumpet(β, b) =

∫
dµ[τ ]

U(1)
exp

{
−γ
2

∫ β

0

du

[(
τ ′′

τ ′

)2

+ (τ ′)
2

]}
. (11)

Physically, these are integrals over the boundary fluctuations of the geometry, parametrised by θ(u)

and τ(u). Quotients over SL(2,R) and U(1) correspond to the isometry groups of the geometries.

Measures µ[θ] and µ[τ ] are induced from the symplectic form in the gauge theory (BF) formulation.

2.2 BF formulation

JT gravity admits a reformulation in terms of a topological gauge theory. This is a key step in

the evaluation of the path integral, yielding the measures over boundary fluctuations and explicitly

showing one-loop exactness.

First, one writes down the first-order bulk action

I[ϕ, λa, ea, ω] = −
∫
M

[
ϕ(dω + e1 ∧ e2) + λ1(de1 + ω ∧ e2) + λ2(de2 − ω ∧ e1)

]
, (12)

where ea are the zweibeins, ω is the spin connection and the Lagrange multipliers λa impose the

no-torsion condition. Next, one identifies the group G associated with the isometries of the on-shell
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geometry. For JT gravity, G = SL(2,R). Let A be the gauge connection and B a g-valued scalar

field. The action of g ∈ G on the fields is

B → g−1Bg, A→ g−1(d+A)g. (13)

The curvature is F = dA + A ∧ A and it transforms in the adjoint representation. Finally, let

⟨·, ·⟩ : g × g → R be a bilinear form which is determined through the quadratic Casimir and

generators JA:

⟨JA, JB⟩ = hAB ⇒ C2 = hABJAJB . (14)

With this setup, one proposes that the action can be written as

IBF[B,A] = −i
∫
M

⟨B,F ⟩+ i

2

∫
∂M

⟨B,A⟩ , (15)

where the boundary term is required to make the variational problem well-posed in the presence of

a boundary.

sl(2,R) has three generators X,Y, Z, with Lie algebra

[X,Y ] = 2Y, [X,Z] = −2Z, [Y,Z] = X, (16)

and the following non-zero basis elements of the bilinear form

⟨X,X⟩ = 2, ⟨Y,Z⟩ = ⟨Z, Y ⟩ = 1. (17)

To match with the bulk action, one makes the identifications:

iB = −λ1X + (λ2 + ϕ)Y + (ϕ2 − ϕ)Z, (18)

A =
1

2

[
−e1X + (e2 − ω)Y + (e2 + ω)Z

]
. (19)

This completes the BF formulation of JT gravity. As a side note, the extension to supersymmetric

JT gravity is very natural, one simply adds appropriate fermionic generators to the Lie algebra.

The path integral is gauge-fixed by the Fadeev-Popov-BRST procedure [17], details of which are

given in appendix 1. The key result is that the integral reduces to an integral over flat connections

with measure induced by the symplectic form

Ω(η, ω) = α

∫
M

⟨η ∧ ω⟩ ≡ α

∫
M

⟨ηa, ωb⟩ dxa ∧ dxb, (20)

and an overall correction factor by the volume of the centre subgroup. Note that this analysis relies

on an orientable M, and a restriction on the matter content of the bulk theory.

Consider variations δA which leave the connection flat,

0 = δF = dδA+A ∧ δA+ δA ∧A = DδA. (21)

The gauge covariant derivative about a flat connection is nilpotent, hence δA = DΘ for some zero-

form Θ. Such variations have the same structure as gauge transformations, however since we have
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already gauge fixed, the only remaining variations are large gauge transformations that don’t die off

at ∂M. The symplectic form reads

Ω(δ1A, δ2A) = α

∫
M

⟨dΘ1 + [A,Θ1], dΘ2 + [A,Θ2]⟩ = α

∫
∂M

⟨Θ1, dΘ2 + [A,Θ2]⟩ , (22)

where the last equality follows from integrating by parts, using the Bianchi identity for the gauge

algebra and setting dA = −A ∧A.
As it turns out [9], the set of large gauge transformations that preserve the boundary conditions

at ∂M are parametrised by a single function ε(u). Physically, the mode ε(u) generates reparametri-

sations u → u + ε(u) of the boundary. From a gravitational perspective, it is the mode associated

with boundary fluctuations. The resulting symplectic form is

Ω =
α

4

∫ β

0

du[dε′ ∧ dε′′ − 2f(u)dε ∧ dε′], (23)

where f(u) is related to the boundary action through I∂ = γ
∫
duf(u), and dε(u) are an infinite

basis on the cotangent space about a point in the space of flat connections. As ∂M ∼= S1 is compact,

this basis has a countably infinite number of elements under Fourier decomposition,

dε(u) =

∞∑
n=−∞

e−2πinu/β
(
dεRn + idεIn

)
, (24)

with reality conditions dεRn = dεR−n and dεIn = −dεI−n

2.3 Disk and trumpet partition functions

The Duistermaat-Heckman theorem states that a path integral over a symplectic manifold is one-

loop exact if the action generates a U(1) symmetry of the manifold [18]. This holds for JT gravity

[19].

Evaluation of the one-loop disk and cylinder path integrals proceed by evaluating the induced

measures µ[θ] and µ[τ ]. Recall that the mode ε(u) generates boundary wiggles through the reparametri-

sation u → u + ε(u). For the disk, this corresponds to the following fluctuation about the saddle

point configuration:

θ(u) =
2π

β
(u+ ε(u)). (25)

The disk action to quadratic order in ε reads

Idisk∂ [ε] = −2π2γ

β
+

2π2γ

β2

∫ β

0

du

[(
β

2π

)2

(ε′′)2 − (ε′)2

]

= −2π2γ

β
+ γ

(2π)4

β3

∑
n>1

(n4 − n2)
[
(εRn )

2 + (εIn)
2
]
. (26)

The three zero modes (ε−1, ε0, ε1) correspond to the SL(2,R) isometry. In the path integral,

we quotient over these modes by excluding the corresponding dεi from the symplectic form Ω. The
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resulting measure, when evaluated on the saddle point configuration f(u) = 2π2/β2, is

dµ[θ]

SL(2,R)
= lim
N→∞

1

N !
(Ω[dεn>2])

N =
∏
n>1

α
8π3

β2
(n3 − n)dεRn dε

I
n. (27)

Hence, the disk partition function reduces to an infinite product of Gaussian integrals

Zdisk(β) = exp

(
2π2γ

β

)∏
n>1

α
8π3

β2
(n3 − n)

∫ ∞

−∞
dεRn dε

I
n exp

(
−γ (2π)

4

β3
(n4 − n2)

[
(εRn )

2 + (εIn)
2
])

= exp

(
2π2γ

β

)
2γ

αβ

∏
n>0

αβ

2γn
. (28)

To regularize, consider the related sum of logs

∞∑
n=1

[
log

(
αβ

2γ

)
− log(n)

]
= log

(
αβ

2γ

)
ζ(0) + ∂s ζ(s)

∣∣∣∣
s=0

∼ log

(√
γ

αβπ

)
, (29)

where the last step uses Zeta function regularization ζ(0) = −1/2 and ζ ′(0) = log
(
1/
√
2π
)
. With

this regularization scheme, the partition function reads

Zdisk(β) =
1√
2π

(
2γ

αβ

)3/2

exp

(
2π2γ

β

)
(30)

The trumpet case proceeds similarly, the action to quadratic order in fluctuations is

Itrumpet
∂ [ε] =

γb2

2β
+

(2π)4

β3

∑
n>0

(
n4 +

b2

(2π)2

)[
(εRn )

2 + (εIn)
2
]
. (31)

The zero mode ε0 is identified with the U(1) isometry of the trumpet. The measure with saddle

point f(u) = −b2/2β2 is

dµ[τ ]

U(1)
=
∏
n>0

α
8π3

β2

(
n3 +

b2

(2π)2
n

)
dεRn dε

I
n, (32)

and the path integral after regularization reads

Ztrumpet(β, b) =

√
γ

παβ
exp

(
−γb

2

2β

)
. (33)

2.4 Volumes of bulk moduli

This section summarises the results of Mirzakhani [20] on the evaluation of the volumes Vg,n(b). The

central result is a recursion relation relating volumes of different (g, n).

The moduli space is defined through the Teichmüller space T (S), which is the set of pairs of

hyperbolic surfaces and diffeomorphisms (X, f) such that f : S → X. In the case ∂S is non-empty,

the subspace T (S, b) is defined by fixing the lengths ℓi of boundary components i ∈ ∂S:

T (S, b) = {(X, f) ∈ T (S) | ℓi(X) = bi ∀ i ∈ ∂S}. (34)
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Let Sg,n to be an oriented connected surface of genus g and n boundary components. The moduli

space Ng,n(b) of Riemann surfaces homeomorphic to Sg,n is the quotient space

Ng,n(b) = T (Sg,n, b)/Modg,n, (35)

where Modg,n is the mapping class group of Sg,n. The essential idea is that two elements of the

Teichmüller space are distinct Riemann surfaces if and only if they are not related to each other

through diffeomorphisms.

Next, one introduces coordinates on T (Sg,n, b) through the trousers decomposition. The idea is

to divide the surface into genus zero geometries with three boundaries (trousers), by cutting along

closed curves. The number of such closed curves needed is k = 3g−3+n, see appendix 2 for a proof.

This provides a set of 2k coordinates {ℓ1, . . . , ℓk, τ1, . . . , τk}, consisting of the lengths ℓi of the closed

geodesics and the twists τi. These are called the Fenchel-Nielsen coordinates. The dimension of the

associated Teichmüller space is therefore 2k.

There is a natural symplectic form ω on Tg,n(b) which is invariant under the mapping class group.

It is called the Weil-Petersson form, and in Fenchel-Nielsen coordinates takes the form

ω =

k∑
i=1

dℓi ∧ dτi. (36)

Before proceeding with the computation of Vg,n, let us recall the expression for Zg,n given in

equation (6). The induced measure µ[b] associated with the gluing of n trumpets is simply

µ[b] = db1 . . . dbndτ1 . . . dτn, (37)

where the local coordinates take values bi ∈ R+ and τi ∈ [0, b). Performing the integrals over the

twist parameters, one obtains

Zg,n(β1, . . . , βn) =

∫ ∞

0

b1 . . . bndb1 . . . dbnVg,n(b1, . . . , bn)

n∏
i=1

Ztrumpet(βi, bi). (38)

Similarly, the volume Vg,n(b) of the moduli space is computed as

Vg,n =

∫
Ng,n

dµ[ω] =
1

k!

∫
Ng,n

ωk, (39)

however the computation is much more difficult due to the restriction to a fundamental domain. The

main idea of [20] is to use a “generalized McShane identity” to circumvent having to compute the

fundamental domains for each (g, n). To illustrate how this works, let us consider the one-boundary

torus N1,1. This surface can be constructed by gluing a single pair of trousers to itself. The space

of all such gluings is

N ∗
1,1 = {(X, γ) | X ∈ N1,1, γ ∈ {closed curve on X}}. (40)

This is related to T1,1 through a quotient by the stabilizer of γ, where the particular choice of γ does
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not matter. In Fenchel-Nielsen coordinates, one has

N ∗
1,1

∼= {(ℓ, τ) | ℓ ∈ R+, τ ∈ [0, ℓ)}. (41)

The generalized McShane identity for this case reads

2

b

∑
γ

log

(
eb/2 + eℓ

e−b/2 + eℓ

)
= 1, (42)

where b is the length of the geodesic boundary component of the torus and ℓ is the length of the

closed curve γ. Integrating this over N1,1, which can be written in terms of an integral over N ∗
1,1

through a projection map, yields

V1,1 =
2

b

∫ ∞

0

dℓ

∫ ℓ

0

dτ log

(
eb/2 + eℓ

e−b/2 + eℓ

)
=

1

24
(b2 + 4π2). (43)

Note that the sum over γ is contained in the integral over N ∗
1,1. Effectively, this procedure shifts

the problem of finding a fundamental domain over N1,1 to finding the Jacobian associated with the

trousers decomposition. For higher order (g, n), the generalized McShane identity looks much more

complicated and the computations become intractable. There is a recursion relation that allows for

the computation of all higher order Vg,n from the inputs V1,1 and V0,3 = 1.
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3 Matrix integrals

Random matrix models are defined through their partition functions

Z =

∫
dMe−N TrV (M). (44)

A particular model is specified by the matrix potential V (M) and the symmetry group G under

which the matrices transform. There are ten common choices of G, three Dyson [21] and seven

Altland-Zirnbauer ensembles [22].

We focus on the β = 2 Dyson ensemble, which has the symmetry group U(N) withM Hermitian.

It turns out that this model can reproduce both JT gravity [9] and the supersymmetric Cangemi-

Jackiw gravity [14] under different potentials and dictionaries. The trace of any polynomial function

V (M) is invariant under U(N), and an invariant measure is

dM =
N∏
i=1

dMii

N∏
i<j

dRe(Mij)d Im(Mij), (45)

where one simply integrates over all independent components of M . Expectation values of observ-

ables Oi(M) are given by

⟨O1(M) . . .On(M)⟩ = 1

Z

∫
dMe−N TrV (M)O1(M) . . .On(M). (46)

An observable of particular importance is Z(β) = Tr e−βM , which is related through a Laplace

transform to the resolvent

R(E) ≡ Tr
1

E −M
= −

∫ ∞

0

dβ eβEZ(β). (47)

3.1 Genus expansion

Matrix integrals are zero-dimensional Euclidean QFTs. Expectation values can be computed in

perturbation theory with Feynman diagrammes. Noting that the parameter 1/N is analogous to

Planck’s constant, one expects the theory to reorganize itself in a “classical” limit, where N → ∞.

This was indeed shown to be the case by ’t Hooft [23].

’t Hooft’s argument adapted for the matrix potential

V (M) =
1

2
M2 +

∑
q

gqM
q (48)

is summarized as follows. Consider a vacuum diagramme with P propagators, V vertices and I

closed loops. The number of p-point vertices Vp is related to P through

2P =
∑
p

pVp. (49)

Viewing each diagramme as a tessellation of a two-dimensional surface2, each closed loop is identified

2This is possible because we are restricting to vacuum diagrammes.
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by a face of the polyhedron. Hence, the Euler relation applies

V − P + I = 2− 2G, (50)

where G is the genus of the surface. Each diagramme therefore scales with N as

N I+P
∏
p

(gpN
1−p)Vp = N2−2G

∏
p

gp, (51)

where the additional factor of NP accounts for the factor of N in front of the matrix potential

and can be traced back to the rescaling of the matrices M → M/
√
N . In canonical scaling, the ’t

Hooft limit has to be accompanied with an appropriate scaling of the couplings gp to render finite

observables. In this choice of non-canonical normalisation, no such rescaling of gp are needed.

The matrix integral admits a perturbative large N expansion

Z =

∞∑
G=0

ZG
N2G−2

+ non-perturbative. (52)

The above analysis of vacuum diagrammes is easily modified for correlators of n observables by

adding a boundary for each observable in the Euler relation, so that a genus G diagramme with n

boundary scales as

⟨O1 . . .On⟩G,n ∼ N2−2G−n
∏
p

gp. (53)

Hence, observables also admit large N expansions. A quantity of interest for us is the connected

correlators of resolvents:

⟨R(E1) . . . R(En)⟩c =
∞∑
G=0

RG,n(E1, . . . , En)

N2G+n−2
+ non-perturbative. (54)

Computation of resolvents follow from the so-called loop equations. In a basis where the matrices

M are diagonal, the matrix integral up to a constant reads

Z =

∫
dNλ

∏
i<j

(λi − λj)
2e−N

∑
i V (λi). (55)

Loop equations follow from the invariance of this integral under variations of λ,

0 =

∫
dNλ

∂

∂λa

 1

E − λa
R(E1) . . . R(Ek)

∏
i<j

(λi − λj)
2e−N

∑
i V (λi)

, (56)

for a choice of k ≥ 0. It can be shown [24] that the loop equations reduce to

Rk+2(E,E, I) +

k∑
i=1

∂

∂Ei

Rk(E, I \ {Ei})−Rk(I)

E − Ei
= N(V ′(E)Rk+1(E, I)− Pk(E; I)), (57)
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where I = {E1, . . . , Ek}, and Rk(I) = ⟨R(E1) . . . R(Ek)⟩c, and

Pk(E; I) =

〈
Tr

V ′(E)− V ′(M)

E −M

k∏
i=1

R(Ei)

〉
c

. (58)

In the large N limit, the set of loop equations can be solved perturbatively by noting the genus

expansions given by equation (54) and

Pk =

∞∑
G=0

N1−2G−nPG,k, (59)

where the additional factor of N−1 in Pk is due to it having k + 1 insertions.

3.2 Spectral density

The spectral density ρ(λ) ≡ Tr δ(λI −M) is related to the resolvent through

Tr e−βM =

∫
Ω

dλρ(λ)e−βλ ⇒ R(E) =

∫
Ω

dλ
ρ(λ)

E − λ
, (60)

where Ω is the support of ρ, also called the spectral domain. It also admits a genus expansion.

Denoting by ρ0 the density at the same order as R0,1, one gets

R0,1(E) =

∫
Ω0

dλ
ρ0(λ)

E − λ
(61)

Note that in general Ω ̸= Ω0. R0,1 is determined through the k = G = 0 loop equation

R0,1(E)2 = V ′(E)R0,1(E)− P0,0(E), (62)

which is solved by introducing polynomials Q(E) and σ(E) such that V ′2 − 4P0,0 = Q2σ. Then,

R0,1 =
1

2

(
V ′ −Q

√
σ
)
. (63)

Q is determined by the asymptotic condition R(E) ∼ 1/E + O
(
1/E2

)
at large E. The roots of σ

determine the spectral domain Ω0 through

ρ0(E) = − 1

2πi
[R0,1(E + iϵ)−R0,1(E − iϵ)]. (64)

As
√
σ changes sign when one crosses over a branch cut, one has

ρ0(E) =
1

2π
Q(E)

√
−σ(E), E ∈ {branch cuts of σ}. (65)

Matrix integrals of the type Ω0 = [a, b] are said to be one-cut, as R0,1 is defined with a single branch

cut in the complex E plane. In such cases, σ(E) = (E − a)(E − b).
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Computing R0,2

I will briefly outline the computation ofR0,2, following [24], as the end result has physical significance.

The leading order k = 1 loop equation, combined with singular properties of σ and M imply

R0,2(E1 + iϵ, E2) +R0,2(E1 − iϵ, E2) = − 1

(E1 − E2)2
, E1 ∈ Ω0. (66)

This expression is unique in the sense that its only dependence on the matrix potential is through

the support Ω0. It is a universal quantity, shared between all matrix models with the same leading

order spectral domain.

One then writes down the general solution with the appropriate behaviour when E1 or E2 goes

through a cut:

R0,2(E1, E2) =
1

2(E1 − E2)2

(
Q2(E1, E2)√
σ(E1)

√
σ(E2)

− 1

)
, (67)

where Q2(E1, E2) = Q2(E2, E1) is determined through a set of constraints implied by the analytic

structure and the asymptotic behaviour of R0,2. In the special one-cut case, where Ω0 = [a, b], the

universal result is

R0,2(E1, E2) =
1

2(E1 − E2)2

(
E1E2 + ab− (a+ b)(E1 + E2)/2√

σ(E1)
√
σ(E2)

− 1

)
, (68)

which is manifestly independent from V (M) except through the end-points of Ω0.

3.3 Topological recursion

Systematically combining the set of loop equations with the genus expansion, one ends up with the

so-called topological recursion formulation of [24, 25]. Define the Riemann surface Σ immersed in

(C ∪∞)× C by

i(Σ) = {(x, y) ∈ (C ∪∞)× C | y2 − V ′(x)y + P0,0(x) = 0}, (69)

where the equation for the spectral curve y is the loop equation for R0,1. Let z denote a coordinate

chart on Σ. The points at which the map x : z 7→ x(z) degenerates are branch points. It is

conventional to take x = −E.

The local Galois involution σa(z) about branch point a exchanges the two sheets meeting at a.

Operationally, assuming dx has a simple zero at a, this corresponds to exchanging the sign of the

square root in the inverse map z(x):

z(x) = a+

√
2

x′′(a)
(x− x(a)) + · · · ⇒ σa(z(x)) = a−

√
2

x′′(a)
(x− x(a)) + · · · (70)

The key result is that one can recursively define n-forms ωG,n which at given order (G,n) satisfy

the loop equations. Defining the inputs to the recursion

ω0,1 = ydx, ω0,2 =
dz1 ∧ dz2
(z1 − z2)2

, (71)
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and the recursion kernel around branch point a

Ka(z1, z) =
1

2

∫ z
σa(z)

du ω0,2(z1, u)

ω0,1(z)− ω0,1(σa(z))
, (72)

the remaining ωG,n are given through

ωG,n(z1, I) =
∑
a

Res
z=z0

Ka(z1, z)

ωG−1,n+1(σa(z), I) +

′∑
h+h′=g

ωh,1+|J|(z, J)ωh′,1+|J′|(σa(z), J
′)

,
(73)

where I = {z2, . . . , zn}, J ∪ J ′ = I and
∑′

excludes (h, J) = (0, ∅) and (h, J) = (g, I). ωG,n are

related to the connected resolvents through

ωG,n(z1, . . . , zn)dz1 ∧ · · · ∧ dzn = RG,n(x1, . . . , xn)dx1 ∧ · · · ∧ dxn. (74)

3.4 Double scaling

Double scaling is a particular large N limit, where either one or both of the spectral edges are sent

to infinity. This procedure defines a one-parameter family of matrix integrals.

More precisely, one takes N → ∞ and tunes the couplings gp → gcp such that the leading order

density of states remains fixed [10]:

ρtotal0 (E) =
1

ℏ
ρ0(E), (75)

where ρtotal0 denotes the total spectral density (its integral is N), and ℏ is some finite constant.

Intuitively, by fine-tuning the potential appropriately, we are increasing the density of eigenvalues

as N → ∞ such that the integral of ρ0(E) diverges as Nℏ. Equivalently, one can think of this

procedure as “zooming in” on a part of the spectral density [26].

The formalism of loop equations and topological recursion applies as before, with the only dif-

ference being the parameter in the genus expansion N → ℏ−1. For example, now we have a small ℏ
expansion for the resolvents

⟨R(E1) . . . R(En)⟩c =
∞∑
G=0

ℏ2G+n−2RG,n(E1, . . . , En) + non-perturbative. (76)

The simplification through double scaling is purely due to the fact that in a double scaled model,

one does not require ρ0(E) to be unit normalised. Essentially, we are decompactifying the spectral

domain Ω0.

First, consider the case Ω0 = [0,∞). This defines a two-sheet Riemann surface, with global

coordinates z2 = x. The local Galois involution about z = 0 is promoted to a global involution

σ(z) = −z. For y(z) odd, the recursion kernel is

K0(z1, z) =
1

4y(z)(z21 − z2)
, (77)



14

and the recursion relation becomes

ωG,n(z1, I) = Res
z=0

{
1

4y(z)(z21 − z2)

ωG−1,n+1(−z, I) +
′∑

h+h′=g

ωh,1+|J|(z, J)ωh′,1+|J′|(−z, J ′)

}.
(78)

This particular limit turns out to be relevant for JT gravity.

Alternatively, one can send both spectral edges to infinity, setting Ω0 = R. In this case, it turns

out that the residues at z = ±∞ vanish and the recursion becomes trivial ωG,n = 0 [27]. The only

non-zero resolvents are R0,1 and R0,2. This case is relevant for flat space holography.

3.5 Connection to gravity

Identification of matrix integrals as non-perturbative completions of two-dimensional quantum grav-

ity theories proceeds by matching perturbative observables on both sides. For JT gravity, the map

takes a simple form [9]:

ZJT(β1, . . . , βn) =
〈
Tr e−β1M . . .Tr e−βnM

〉
c
. (79)

To establish a correspondence, both sides have to match order by order in perturbation theory.

The free parameter ℏ introduced in the double scaling limit can be fixed to the genus expansion

parameter on the JT side, ℏ = e−S0 . One then tunes the matrix potential such that the leading

order one-boundary partition functions match. In terms of the spectral density,

ZJT
0 (β) =

∫ ∞

0

ρJT0 (E)e−βEdE (80)

The leading order one-boundary partition function is given by the disk geometry, for which we have

(setting α = 2):

ρJT0 =
γ

2π2
sinh

(
2π
√
2γE

)
. (81)

The corresponding spectral curve on the matrix integral side is

y(z) = −iπρJT0 (−z2) = γ

2π
sin
(
2πz

√
2γ
)
, (82)

where the first equality follows from equation (64). Specifying the double scaling limit and the

spectral curve completely determines the matrix integral. All that remains to check is the matching

of the rest of the RG,n.

R0,2 in the one-cut case was computed explicitly in equation (68). In the double-scaled limit, we

set a = 0 and b→ ∞3, and substituting for Ei = −z2i we get

R0,2(z1, z2) =
1

4z1z2(z1 + z2)2
. (83)

Under the map (79), this resolvent is related to the two-trumpet JT partition function through

equation (47):

R0,2(E1, E2) = (−1)2
∫ ∞

0

dβ1dβ2 e
β1E1+β2E2ZJT0,2 (β1, β2). (84)

3It doesn’t matter the order in which we set b → ∞ and a → 0.
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Substituting for ZJT0,2 (β1, β2) and performing the Laplace transforms does indeed match with the

matrix integral result.

Finally, we check agreement with all higher order RG,n. Equivalently, we will check agreement

between the topological recursion of (78) with the recursion formula for the Weil-Petersson volumes

of bulk moduli surfaces of section 2.4. Equation (74) implies

ωG,n(z1, . . . , zn) = (−2)nz1 . . . znRG,n(−z21 , . . . ,−z2n). (85)

Combining with equation (47) yields an expression for ωG,n in terms of ZG,n:

ωG,n(z1, . . . , zn) = 2n

(
n∏
i=1

zi

∫ ∞

0

dβie
−βiz

2
i

)
ZG,n(β1, . . . , βn). (86)

Substituting for ZG,n using equations (33) and (38) yields

ωG,n(z1, . . . , zn) =

(
n∏
i=1

2nzi

(
γ

2πβ

)∫ ∞

0

dβi

∫ ∞

0

bidbie
−γb2i /2βi

)
VG,n(b1, . . . , bn). (87)

Performing the integral over βi gives

ωG,n(z1, . . . , zn) =

(
n∏
i=1

√
2γ

∫ ∞

0

bidbie
−
√
2γbizi

)
VG,n(b1, . . . , bn). (88)

It was shown in [28] that Mirzakhani’s recursion relation for VG,n implies the topological recursion

of equation (78) for y(z) = sin(2πz)/4π2 and γ = 1/2. It is straightforward to check that this

correspondence remains valid for arbitrary γ. This completes the correspondence between JT and a

double-scaled one-cut matrix integral to all orders in e−S0 .

3.6 Non-perturbative analysis

The non-perturbative analysis of [26, 29, 30, 31, 32] starts by introducing a system of polynomials

Pn(λ) = λn+O
(
λn−1

)
orthogonal with respect to the matrix potential measure dµ(λ) = dλe−NV (λ):

(Pn, Pm) ≡
∫ ∞

−∞
dµ(λ)Pn(λ)Pm(λ) = hnδnm. (89)

These polynomials encode all information about the matrix model, one can express the partition

function and all observables in terms of them. Define the related set of orthonormal functions

ψn(λ) =
1√
hn
e−NV (λ)/2Pn(λ) ⇒

∫ ∞

−∞
dλψn(λ)ψm(λ) = δnm. (90)

At finite N , the joint probability distribution for a subset of eigenvalues pn(λ1, . . . , λn) an be ex-

pressed in terms of the ψn through the kernel

K(λi, λj) =

N−1∑
n=0

ψn(λi)ψn(λj), (91)
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such that

pn(λ1, . . . , λn) = det
[
K(λi, λj)

]n
i,j=1

. (92)

As shown in [26], it follows that the cumulative distribution for the nth eigenvalue to lie in range

(a, b) is given by

c(n; (a, b)) =

n∑
j=0

(−1)j

j!

dj

dzj
F [(a, b); z)], (93)

where the Fredholm determinant4 F is defined in terms of the integral operator

K |(a,b): f(λ) →
∫ b

a

dκ K(λ, κ)f(κ) (94)

as

F [(a, b); z)] = det
(
1− zK |(a,b)

)
. (95)

It encodes the exact spectrum. The challenge is its non-perturbative computation in the double

scaling limit.

Double-scaling limit

In two-dimensional gravity literature, two different types of double-scaling limits are often used.

One type considers tuning the matrix potential gp → gcp such that in the large N limit, the partition

functions at each genus diverges in a perturbative expansion in the couplings. For an interpretation

of this in terms of triangulations of random surfaces, see [33]. The idea is that as higher genus

contributions are enhanced, in a correlated limit of N → ∞ and gp → gcp, one obtains finite con-

tributions from all genuses. It is accompanied with zooming into the eigenvalues at the edge of the

spectral density. This is the double-scaling limit used in JT gravity literature.

The alternative double-scaling limit considers tuning the potential to a critical point correspond-

ing to a phase transition from one-cut to double-cut phases. The prototypical example of this is the

potential

V (M ;κ) =
1

κ

(
−M2 +

1

4
M4

)
, (96)

in the limit κ→ 1. It was shown in [27] that in this limit, zooming into the eigenvalues around zero

yields a spectral density that matches with non-supersymmetric CJ gravity.

In either case, one considers a scaling ansatz 1/N = ℏδ2k+1, where δ → 0 and k is an integer

determined by the order of the matrix potential. This is supplemented by a rescaling of the eigen-

values around some value λ = λc−Eδ2, and of the polynomial index n/N → 1−xδ2k. It was shown
in [29] that the orthogonal functions ψn(λ) → ψ(x,E) satisfy the differential equation[

−ℏ2
∂2

∂x2
+ u(x)

]
ψ(x,E) = Eψ(x,E), (97)

with u(x) determined through a non-linear ODE determined by the order of the matrix potential.

The rest of the analysis proceed numerically, but the idea is to first solve for u(x), then obtain

4This object is a Fredholm determinant, as it is the determinant of the difference between the identity and an
integral operator.
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ψ(x,E) from which the continuum limit of the kernel in equation (91) can be computed. Then, one

calculates the Fredholm determinant and extracts the exact microstate spectrum.
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4 Supersymmetric Cangemi-Jackiw gravity

This section summarises the results of [14] on supersymmetric Cangemi-Jackiw (SCJ) gravity.

4.1 BF formulation

Following the analysis of section 2.2, it is useful to start directly with a BF formulation. As before,

we introduce the spacetime scalar B and one-form connection A valued on the algebra of a gauge

group G. Since we are interested in obtaining a flat space dilaton gravity theory, we choose the

gauge algebra g to contain the Minkowski (Euclidean) isometries. Hence, introduce as generators a

pair of translations Pa and a rotation J obeying

[J, P±] = ±P±. (98)

To endow the space with N = 1 supersymmetry, introduce a pair of fermionic generators Q± with

[J,Q±] = ±1

2
Q±. (99)

The Poincaré algebra does not admit a non-degenerate bilinear form. As shown in [34], this can be

remedied by an inclusion of a central element I. This centrally extended superalgebra is referred to

as the Maxwell algebra with the additional non-zero (anti)commutators [35]

[P+, P−] = I, {Q+, Q−} = I. (100)

It turns out to be convenient [14] to break the ± symmetry and include another pair of non-zero

commutators:

[P−, Q+] = −1

2
Q−, {Q+, Q+} = P+. (101)

This completes the Maxwell superalgebra. The non-degenerate bilinear form obtained from the

quadratic casimir has the non-zero elements

⟨P+, P−⟩ = 1, ⟨J, I⟩ = 1, ⟨Q+, Q−⟩ = 2. (102)

The BF theory action is

IBF[A,B] =

∫
M

⟨B,F ⟩ − 1

2

∫
∂M

⟨B,A⟩ . (103)

4.2 Bulk spacetime action

The connection to the gravitational theory is made through identifying fields, zweibeins and the spin

connection as coefficients of generators

A =
∑
t=±

(etPt + ψtQt) + ωJ + ÃI, (104)

B =
∑
t=±

(xtPt + λtQt) + ΨJ +ΦI. (105)
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The theory contains two scalar fields Φ,Ψ, a gauge field Ã and two fermionic fields ψ±. The pairs

x± and λ± are non-dynamical and don’t appear in the bulk bosonic action, which reads

ISCJ

∣∣∣∣
λ,ψ=0

=
1

2

∫
M
d2x
√
|g|
[
ΦR+ 2Ψ(εµν∂µÃν + 1)

]
. (106)

Clearly, the dilaton Φ fixes R = 0, so the on-shell geometry is locally flat. This action is supplemented

by a boundary term derived from the BF action.

The on-shell solution used in [14] is first written in Bondi gauge for Lorentzian signature, then

analytically continued to Euclidean time. This yields complex zweibeins and spin connection

e+ = i(P (τ)r + T (τ))dτ − dr, e− = −idτ, ω = −iP (τ)dτ, (107)

where (P, T ) = (2π/β, 0) for the disk and (P, T ) = (0, b2/2β2) for the cylinder with circumference b.

These complex valued saddles are consistent with the Konstevich-Segal criteria of [36, 37]. It would

be interesting to explore the implications of complex saddles further in this context, specifically

asking whether there are more complex saddles that can appear as off-shell contributions.

Supersymmetry transformations are realized as a subgroup of BF gauge transformations. Parametris-

ing by Grassman functions ϵ±, they are induced by

Θ = ϵ+Q+ + ϵ−Q−, G = 1 +Θ. (108)

Invariance under such supersymmetry transformations are implied by the gauge invariance of the

BF formulation.

4.3 Euclidean partition function

Consider the Euclidean partition function for n asymptotic boundaries of lengths βi. The boundary

conditions are such that bosonic fields are periodic, and fermionic fields are antiperiodic around

boundary circles. The partition function is

Z(β1, . . . , βn) =

∫
[dX]e−ISCJ[X]+S0χ(M), (109)

where the addition of the Euler characteristic term is ad-hoc, unlike JT gravity where it arises

naturally from dimensional reduction. The integral over the metric instructs us to sum over all

allowable Euclidean manifolds M, leading to the usual genus expansion

Z(β1, . . . , βn) =

∞∑
g=0

(e−S0)2(g−1)+nZg(β1, . . . , βn) + non-perturbative. (110)

Noting that ISCJ ⊃
∫
Φdω, taking an integration contour for Φ along a purely imaginary line gives

a factor of δ(R).

It is known that there are only two choices of elliptic compact Riemann surfaces: the disk and
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the cylinder [38]. Hence, the genus expansion simplifies dramatically:

Z(β) = eS0Zdisk(β) + non-perturbative (111)

Z(β1, β2) = Zcylinder(β1, β2) + non-perturbative (112)

Z(β1, . . . , βn) = non-perturbative for n > 2. (113)

The computation of the disk and cylinder partition functions proceed in a similar manner to the

JT case, one obtains induced measures from the BF formulation and imposes appropriate asymptotic

boundary conditions to determine allowed large gauge transformations. As before, the Duistermaat-

Heckman theorem holds and the resulting integrals are one-loop exact.

The resulting partition functions with Zeta function regularization read

Zdisk(β) =
2
√
2

γβ
, Zcylinder(β1, β2) =

1

γ(β1 + β2)
, (114)

where the arbitrary constant γ is inherited from the BF theory boundary condition. Noting that

both partition functions are functions only of the combination γβi, wlog one can fix γ = 1. This

amounts to a choice of units.

4.4 Matrix model completion

Following the analysis of section 3.4, the relevant double-scaling limit is one which sets Ω0 = R so

that only R0,1 and R0,2 remain non-zero. All that remains is identifying the map under which R0,1

and R0,2 yield the disk and cylinder partition functions.

In the case of JT gravity, the connection to the matrix integral was made through the map

given by equation (79). Equivalently, the matrix operator that corresponded to the insertion of an

asymptotic boundary of length β was Tr e−βM . In that case, the random matrices M acquire an

interpretation as boundary Hamiltonians. We generalize this notion to consider maps of the form

ZSCJ(β1, . . . , βn) = ⟨O(β1) . . .O(βn)⟩c , (115)

where the operators O(βi), corresponding to the insertion of an asymptotic boundary, are to be

determined.

At this point, the universality of R0,2 becomes crucial. Taking the limit of (68) as a = b → ∞
with a branch cut along the real positive line yields

R0,2(E1, E2) =
−1

(E1 − E2)2
(116)

if E1 and E2 are on different sheets of the Riemann surface, and zero otherwise. The map O(β) can

be determined through matching with the cylinder partition function. It has the form

O(β) =

∫ ∞

−∞
dp Tr

[
exp
(
−β(M2 + p2)

)]
. (117)

The integral over p is a feature of flat space gravity, also appearing in the non-supersymmetric case
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[27, 13]. With this choice of O(β), one then tunes the matrix potential such that

⟨O(β)⟩ ≃ eS0Zdisk(β) = eS0
2
√
2

β
. (118)

After performing the integral over p, the left hand side can be expressed in terms of the leading

order spectral density:

⟨O(β)⟩ =
√
π

β

∫ ∞

−∞
dλ e−βλ

2

ρ0(λ). (119)

The choice of ρ0 that matches with the disk is simply the constant density ρ0 = 1/πℏ where

ℏ = e−S0/2
√
2. This can be obtained from the Gaussian potential V (M) = 1

2M in the double-

scaled limit ℏ−1 = δN and λ = δE. This is not a conventional double-scaling limit, as there are no

couplings in the potential to tune to criticality. We elaborate on this point in section 5.5. As shown

in [14], this matrix model yields the following analytic solution for the kernel

K(E,E′) =
1

π

sin((E − E′)/ℏ)
E − E′ , (120)

from which non-perturbative observables of the gravitational theory can be obtained, an example of

which is the exact spectral density:

ρ(E) = lim
E→E′

K(E,E′) =
1

πℏ
. (121)

This matches exactly with the leading order density, suggesting that ⟨ρ(E)⟩ does not receive any

non-perturbative corrections. Multi-boundary observables, however, do receive non-perturbative

corrections. The spectral form factor S(β, t), defined in the bulk theory as

S(β, t) = Z(β + it)Z(β − it) + Z(β + it, β − it), (122)

is a commonly studied quantity in the two-dimensional gravity literature. For SCJ gravity, it takes

the exact analytic form

S(β, t) =
1

ℏ2
1

β2 + t2
+

1

2β

(
1− e−f(β,t)

)
+

1

2β

√
π

f(β, t)

[
1− Erf

(√
f(β, t)

)]
, (123)

where f(β, t) ≡ 2βℏ−2/(β2 + t2).
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5 Future directions

5.1 The factorisation puzzle

The Euclidean gravitational path integral, defined as a sum over all spacetime manifolds, presents an

immediate challenge in the context of holography. Multi-boundary partition functions and observ-

ables do not factorise, in the sense Z12 ̸= Z1Z2, due to so-called wormhole contributions connecting

the boundaries. This presents a challenge for holography as it implies that the holographic duals

cannot factorise either [39]. Results identifying matrix duals to two-dimensional theories [9, 10, 11,

27, 14] have provided examples of non-factorising boundary theories, hence raising the question of

whether gravity is fundamentally an ensemble.

A possible resolution is provided through arguing the gravitational path integral shouldn’t sum

over topologies, removing the source of the problem [40]. However, further evidence for the inclusion

of wormhole geometries is provided through the “replica wormhole” computations of [4, 5], recovering

the Page curve for evaporating black holes.

An alternative solution presented in [26] identifies the underlying microstate spectrum of the

matrix dual to JT gravity with a discrete spectrum for JT gravity. In other words, they propose

that the Euclidean path integral captures contributions from an ensemble of deformations of JT

gravity, thereby producing a smooth spectrum to an otherwise underlying discrete one.

It would be interesting to extend the analysis of [26] to extract the discrete spectra associated

with a class of deformations to JT gravity. Matrix duals to a large set of deformations were already

found in [11], so this task is certainly possible. After the discrete spectra of deformations are found,

one can check whether a sum of them indeed produces the smooth spectrum of Euclidean JT gravity,

hence providing a check on the proposed solution of [26] to the factorisation puzzle.

5.2 Two-dimensional swampland

In string theory literature, swampland is a term that refers to the space of consistent quantum field

theories that, from the string theory perspective, can not be consistently coupled to gravity [41].

The complement of the swampland is called the landscape, and it is known that the landscape is

measure zero with respect to the swampland [41]. Conjecturing and proving criteria that identifies

elements of the swampland is a difficult task given the huge number of string compactifications.

One can instead consider a similar classification scheme in the space of two-dimensional theories,

where the criteria of UV completeness is provided by the existence of a matrix dual rather than a

string compactification. Since we know for certain that theories with matrix duals are UV complete,

this criterion is guaranteed to yield a subset of the two-dimensional landscape. However, we can’t

make any statements about the complement, that is to say there is no proof that theories without

matrix duals are UV incomplete.

As a future research direction, one can consider the universality of R0,2 as a first step in con-

straining the 2d swampland. This resolvent puts a direct constraint on the genus zero two-boundary

amplitude, given the leading order spectral domain of the theory which is provided by the genus

zero one-boundary amplitude. It would be interesting to see whether this implies restrictions on the

allowed matter sector or dilaton deformations of, say JT gravity. The main limitation of such an

approach would be the ability to perform calculations on the gravitational side. It has been shown
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that each element in a class of JT deformations of the form

I = −1

2

∫
√
g(ϕR+W (ϕ)) (124)

has a matrix dual [11]. Given the amount of theoretical control two-dimensional theories provide,

further progress can be made in this line of investigation.

5.3 Non-perturbative structure of SCJ gravity

The proposed matrix dual to SCJ gravity admits an analytic non-perturbative solution. This allows

a precise investigation of the structure of non-perturbative corrections. As an example, consider the

spectral form factor of equation (123) in the semiclassical ℏ → 0 limit. The complementary error

function admits an asymptotic expansion for large x of the form

Erfc(x) ≡ 1− Erf(x) =
e−x

2

x
√
π

∞∑
0

(−1)n
(2n− 1)!!

(2x2)n
. (125)

This yields an asymptotic expansion for the spectral form factor for small ℏ:

S(β, t) =
1

ℏ2
1

β2 + t2
+

1

2β

(
1 + exp

[
−2β

ℏ2(β2 + t2)

] ∞∑
n=1

(−1)n
(2n− 1)!!

2n

(
ℏ2
β2 + t2

2β

)n)
. (126)

In this form, it is clear that only the connected two-boundary term receives non-perturbative correc-

tions. This is expected since the single boundary observables are non-perturbatively exact. Recall,

from the genus expansion in equation (109), a genus g manifold with two boundaries is accompanied

with a factor of ℏ2g. From this perspective, it might possible to endow the corrections above with a

genus expansion interpretation. The only caveat is the exp
(
−2βℏ−2/(β2 + t2)

)
term multiplying the

series. Furthermore, the non-perturbative correction is not a function of β, t and ℏ independently,

but only of the combination ℏ2(β2 + t2)/2β. This is nothing but the ratio of the cylinder and disk

partition functions.

As a future direction, it might be worthwhile to investigate whether there is an underlying

geometrical interpretation to the non-perturbative corrections. The problem essentially reduces to

solving the bulk theory exactly. There is no obvious starting point, but a detailed study of complex

saddle point geometries might be a possible avenue [37]. It should be noted that if one is able to find

a procedure that recovers these non-perturbative corrections directly from the gravitational path

integral, one would then be able to exactly define the bulk theory without needing a matrix model

completion. Moreover, generalisations to other two-dimensional (and perhaps higher dimensional)

theories might be possible.

5.4 Free particle sector of SCJ gravity

The matrix operator O(β), corresponding to the insertion of an asymptotic boundary of length β on

the bulk, allows one to define an effective Hamiltonian H, called the Bondi Hamiltonian, through

O(β) =

∫ ∞

−∞
dp Tr

[
exp
(
−β(M2 + p2)

)]
≡ Tr e−βH . (127)
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The Bondi Hamiltonian receives contributions from the matrix model sector throughM2, and a free

particle sector through p. The authors of [27] suggest that the free particle sector can be traced

back to the central extension of the Poincaré algebra, but state that its physical origin is unclear as

it doesn’t appear at the level of the bulk action.

In this section, I would like to note that the volume of the centre of the algebra does appear in the

Fadeev-Popov-BRST procedure outlined in appendix 1. Schematically, the path integral measure

would read

dµ[τ ] =
1

VolZ(G)
lim
N→∞

1

N !
(Ω[dε])N , (128)

where Z(G) is the centre of the Maxwell algebra. Perhaps a careful analysis of this centre contribu-

tion can shed light on the appearance of the free particle sector.

5.5 Uniqueness of the SCJ matrix dual

The authors of [14] claim that a constant spectral density is obtained from a double-scaled Gaussian

potential V (M) = 1
2M

2. However, I would like to point out that it is not obvious that this is the

unique solution. One can tune any even potential with ρ0(0) > 0 such that in a limit zooming in on

λ ∼ 0 the resulting double-scaled spectral density is constant. As an example, consider the quartic

potential

V (M) = g2M
2 + g4M

4, (129)

For g2 > 0, the leading order spectral density for this model has the following expression

ρ0(λ) =
1

π
Re

∫ 1

0

dX√
4R(X)− λ2

, (130)

where

R(X) =
g2
12g4

[√
1 +

12g4
g22

X − 1

]
. (131)

A detailed derivation of this in terms of recursion coefficients is provided in appendix 3. One can

then consider a double-scaling limit with X = xδ2, λ = Eδ and ℏ−1 = Nδ. The resulting spectral

density is

ρ0(E) =
1

πℏ
lim
δ→0

δ2
∫ 1/δ2

0

dx√
4R(xδ2)− δ2E2

. (132)

This is plotted as a function of E and g4 in figure 1, and indeed takes on a constant value depending

on (g2, g4).

One might argue that in a double-scaling limit as simple as this, it is plausible that a large set of

matrix models fall into the same universality class, thereby can be identified. A proof of this claim

would need to show that, under the appropriate double-scaling limit, all such models reproduce

the same non-perturbative behaviour. In other words, the orthogonal functions ψn(E) for all such

models obey the same differential equation. However, there is some evidence against this claim.

The expression for ρ0(E) is well defined for all g4 > −g22/12, which includes a range of negative g4

values. In such cases, one expects the matrix potential to be non-perturbatively unstable. This was

discussed briefly for the quartic potential in [26], from the point of view of a different double-scaling

limit, but should also hold in this case as the matrix potential is not bounded below for g4 < 0. Such
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Figure 1: (Left) leading order spectral density πρ0(E) as a function of E, for g4 ∈ {1, 2, 3}. (Right)
πρ0(E) as a function of g4 for fixed E. For both figures, g2 = 1/2 and δ = 10−6.

matrix models clearly don’t belong to the same universality class as the non-perturbatively stable

Gaussian model.

I think a resolution of this tension can be provided by a more careful definition and analysis of

the double-scaling limit taken in [14]. As mentioned before, this is not a conventional double-scaling

limit as the couplings are not tuned to critical values, and indeed the matrix model itself is not at

a critical point.



Appendix A

Supplementary material

1 Faddeev-Popov-BRST procedure

Following [17], the formal definition of a path integral for the BF theory proceeds by quotienting by

the volume of the group of maps Ĝ : M → G. Let [dA′] denote the gauge fixed measure. First, note

that the subgroup of gauge transformations that leave an arbitrary A invariant are constant maps

from M to the centre Z(G). These elements cannot be fixed by the usual Fadeev-Popov-BRST

procedure and so one quotients them by hand. The path integral reads

1

Vol Ĝ

∫
[dA][dB]e−IBF =

1

VolZ(G)

∫
[dA′][dB]e−IBF . (A.1)

Since the centre of SL(2,R) consists of two elements {I,−I} = Z2, this contributes a factor of

1/2 to the path integral. In literature, this centre factor is omitted as it can be absorbed into the

normalization of the measure.1

Next, one imposes a gauge fixing condition. The covariant derivative D acts on a p-form η as

Dη ≡ dη + [A, η] where the wedge products in the commutator are implicit. Let A = A(0) + β for

some fixed A(0), and choose the following Lorentz-like gauge condition:

G[A] = D
(0)
i Bi = 0, (A.2)

where D
(0)
i is the covariant derivative about A(0). Note that this gauge condition relies implicitly

on a choice of metric on M. These are a set of conditions, one for each group generator, so it is

exhaustive.

BRST procedure follows by defining ghost and anti-ghost fields c and c, which are anti-commuting

zero-forms, along with a commuting zero-form w, all transforming in the adjoint. BRST transfor-

mations are

δA = −Dc, δc =
1

2
[c, c], δc = iw, δw = 0. (A.3)

1I am not aware of additional complications in cases where Z(G) is not discrete, one would proceed by defining an
appropriate measure to compute VolZ(G).

26
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The gauge fixing term in the action is

IGF =

∫
M

√
g
[
⟨iw,D(0)

i Bi⟩+ ⟨D(0)
i c,Dic⟩

]
, (A.4)

and so the gauge-fixed partition function reads

ZBF =
1

VolZ(G)

∫
[dA][dB][dc][dc][dw]

× exp

(
−IBF − i

∫
M

√
g ⟨w,D0

iB
i⟩ −

∫
M

√
g ⟨D(0)

i c,Dic⟩
)
. (A.5)

The key result follows from precisely defining measures on the spaces A of connections and B of

g valued zero-forms on M. The space A has a natural measure induced from the symplectic form.

The tangent space TA(0)A at point A(0) is spanned by g valued one-forms, for which a symplectic

structure can be defined as:

Ω(η, ω) = α

∫
M

⟨η ∧ ω⟩ ≡ α

∫
M

⟨ηa, ωb⟩ dxa ∧ dxb, (A.6)

for some constant α. This is independent from the metric on M. For zero-forms however, M needs

to be endowed with a metric g which induces a metric on B:

(λ, ϕ) = α

∫
M

√
g ⟨λ, ϕ⟩ . (A.7)

For compact groups, the metric on M also induces a metric on A:

(η, ω) = α

∫
M

⟨η ∧ ⋆ω⟩ , (A.8)

where ⋆ is the Hodge star operator. However, this metric is not positive-definite for non-compact

groups due to the presence of negative eigenvalues in the Killing form [42]. For example, the Killing

form of the non-compact group SL(2,R), in the basis of generators defined in section 2.2 is

K = 4

2 0 0

0 0 1

0 1 0

, (A.9)

which has one negative eigenvalue. This problem can be remedied by defining an operator T which

reverses the sign of the negative component, and defining the metric [42]

(η, ω) = α

∫
M

⟨η ∧ ⋆Tω⟩ . (A.10)

This metric is manifestly Kahler-compatible with the symplectic form, as (η, ω) = Ω(η, ⋆Tω) noting

that (⋆T )2 = −1. Kahler-compatibility ensures that one can use the symplectic form to define the

measure on A without referencing the metric g on M [43], while a choice of g remains necessary for

defining the measure on B.
Although the path integral seems to depend on g through the zero-form measure, the Jacobian
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factor associated with change in g cancels out if there are an equal number of bosonic and fermionic

zero-form fields, which is the case in this theory. Relatedly, this makes supersymmetric extensions

to the bulk theory possible to study following a similar topological gauge theory formulation.

Integrals over [dB] and [dw] give factors of δ(F ) and δ(D
(0)
i Bi), localising the path integral over

flat connections. For dimA = 2n, the volume form is µ = Ωn/n!. In the path integral, one takes

n → ∞ after appropriate regularization. Finally, one of the results of [17] is that the integrals over

[dc] and [dc] on orientable M is simply 1.

After gauge fixing, the BF theory path integral reduces to an integral over flat connections with

the measure induced by the symplectic form, and an overall correction factor of 1/VolZ(G).

2 Trousers decomposition

The following is a simple derivation of the number k of closed loops needed to decompose a genus g

surface with n boundaries into trousers geometries.

Consider a (g, n) surface with g > 0. Any such surface can be written as a connected sum Σ#T 2,

where Σ is a (g − 1, n) surface. To introduce a new boundary, one can cut open the T 2 and glue

the two open ends of the torus to two open ends of a trousers geometry. This yields T 2 → T 2#D2,

where the disk is defined with a boundary ∂D2 = S1. Hence the new surface Σ#T 2#D2 is of type

(g, n + 1). Cutting the torus removes one closed geodesic, but gluing with the trousers adds two

closed geodesics. The end result is the addition of a closed geodesic, hence we have

k(g, n+ 1) = k(g, n) + 1. (A.11)

In the zero genus case, one necessarily has n ≥ 3 boundaries. To add a new boundary, one simlpy

glues one end of a trousers to a boundary, hence again introduces one closed geodesic. This implies

k(g, n) = k(g) + n. (A.12)

Now, consider adding a genus. One again cuts open the T 2, but to each open end glues one

end of two different trousers geometries. Then, the pair of trousers are glued together. This yields

T 2 → T 2#T 2, hence g → g + 1. The process had one cut and four gluings, so the number of closed

geodesics has increased by 3. Hence,

k(g + 1) = k(g) + 3. (A.13)

In the special g = 0 case, note again that n ≥ 3, so one can glue a pair of trousers to each boundary,

then glue one pair of boundaries of the trousers. This induces D2#D2 → T 2#D2#D2, again

introducing 3 new closed curves.

Considering the initial condition of a single trousers geometry with g = 0, k = 0 and n = 3, one

gets

k(g, n) = 3g + n− 3. (A.14)
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3 Spectral density through recursion coefficients

The most general recursion relation consistent with the orthogonality condition (89) is a three term

recursion of the form

λPn = Pn+1 +RnPn−1. (A.15)

Considering (Pn−1, dPn/dλ) and integrating by parts yields

(V ′Pn, Pn−1) =
n

N
hn−1, (A.16)

which, after substituting for V ′(λ) and using the recursion relation yields a difference equation for

Rn, the order of which is determined by the order of the potential. For the quartic potential, one

obtains a quadratic difference equation:

Rn[2g2 + 4g4(Rn+1 +Rn +Rn−1)] =
n

N
, (A.17)

which should be supplemented with the initial conditions R0 = 0 and R1 =
∫
λ2dµ(λ)/

∫
dµ(λ),

following from the relation Rn = hn/hn−1.

In the large N limit, one obtains an infinite number of polynomials labeled by a continuous index

n/N = X ∈ [0, 1). The spectral density takes a simple form in terms of Rn → R(X) [44]:

ρ(λ) =
1

π
Re

∫ 1

0

dX√
4R(X)− λ2

, (A.18)

Equation (A.17) becomes a differential equation

R(X)

(
2g2 + 4g4

[
3R(X) +

1

N2

∂R(X)

∂X2
+O

(
1/N4

)])
= X. (A.19)

Solving this order by order in O
(
1/N2

)
is equivalent to the perturbative analysis of loop equations.

In the planar limit one obtains

R0(X) =
1

12g4

[
−g2 +

√
g22 + 12g4X

]
, (A.20)

where the positive square root branch is fixed by the boundary condition R(0) = 0.
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