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0 Summary

Surface growth processes are a subset of non-equilibrium systems which exhibit self-organized
criticality. Such systems naturally evolve to a state where fluctuations are self-similar and
exhibit scaling. Growth models give discrete sets of rules which determine how the surface
evolves as particles are deposited. We were interested in the Das Sarma-Tamborenea (DT)
model which was proposed to describe surface growth by molecular beam epitaxy. For many
such models, it is possible to obtain stochastic PDEs which describe the discrete growth rules
in the continuum limit. For the DT model, a significant discrepancy was observed between the
critical exponents of the discrete model and those of the proposed continuum equation. This
has been the motivation for our project.

First, we simulated the discrete model and elaborated on previous numerical estimations
of the critical exponents. In sections 2.1 and 2.2, we introduce the growth rules of the DT
model and the dynamic scaling it obeys. Then, we outline the computational methods used for
simulations and data analysis in section 3. Results for the simulations of the discrete model are
presented and discussed in section 4.1.

The method used to obtain a continuum equation is shown in detail in section 2.3. A
brief discussion of step function regularization is presented in section 2.4. Following similar
computational methods, numerical results for the continuum equation are discussed in section
4.2.

Our results show that numerical solutions of the continuum equation obtained following a
systematic method converges onto the discrete DT model under correct step function regular-
ization. We made estimations for the critical exponents for the DT model in agreement with
previous results. Due to time constraints, solutions of the continuum equation provided less
reliable data for exponent analysis. The results may be improved significantly by simulations of
larger lattices with more repetitions.

Declaration of work undertaken

I have undertaken the computational simulation and theory aspects of this project. This includes
coding the simulation for the discrete DT model, going over previous literature on obtaining
continuum equations for various growth models, numerically integrating the stochastic PDE,
and finally, running the simulations through the HPC cluster to obtain data.
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Abstract

The Das Sarma and Tamborenea growth model was simulated in 1+1 dimensions for lattice
sizes L ≤ 1024, without employing noise reduction techniques. Through an analysis of finite-
size effects, the roughness exponent was estimated to be α ≈ 1.07. The growth exponent was
found to be β ≈ 0.366 from shorter simulations of larger lattices and the dynamical exponent
was estimated to be z ≈ 3.3. The continuum description of the DT model following the method
proposed by Vvedensky et al. [1] was also analysed. The Langevin equation describing the
model was numerically integrated for lattice sizes L ≤ 128. With appropriate regularization
of the step function, it was shown that the solutions of the Langevin equation converge to the
simulations of the discrete model as the integration step is lowered. Finally, similar analysis of
the critical exponents yielded the estimates α ≈ 1.25, β ≈ 0.369, z ≈ 3.5.

1 Introduction

Surface growth is one of the simplest examples of dynamical non-equilibrium processes with
broad physical applications including wetting, crystal growth, coating and vapour deposition
[2, 3]. In such processes, an interface between two media grows as parts are deposited onto it,
and evolves in time with some structure characterized by fluctuations. It has been proposed
that in most surface growth processes, the surface structure is self-similar [4]. As an immediate
consequence of self-similarity, surface fluctuations exhibit dynamic scaling governed by critical
exponents α, β and z which define universality classes.

We are interested in crystal growth, where the particles that constitute the surface are located
at fixed lattice sites. This allows the surface configuration to be specified by the height of each
site. For example, for a one dimensional lattice of length L, the surface configuration is

H = {h1, h2, . . . , hL}, (1)

where hi is the height of the ith lattice site. In d dimensions, the surface configuration H would
contain Ld entries.

The deposited particles interact with the surface. These interactions are described by growth
models, which assign a set of rules for deposition and diffusion of particles onto the surface. One
of the simplest examples of a growth model is the random deposition (RD) model, where the
particles simply stick to the lattice sites they were incident at [5]. A simple modification to
the RD model is to include surface diffusion, where the particles diffuse to the neighbouring
site with the smallest height. This would yield the Edwards-Wilkinson (EW) model [6]. We
are interested in the Das Sarma-Tamboranea (DT) model, which describes growth by molecular
beam epitaxy (MBE).

MBE is a process developed to grow films of semiconducting materials. Beams of atoms
or molecules are incident on the surface of the material in vacuum. The vacuum environment,
coupled with a low deposition rate ensures epitaxial growth, meaning the crystal structure of the
material is preserved [7]. We will not be concerned with the physics of MBE as it is contained in
the model we consider. Physical motivations of the growth rules of the DT model are discussed
in section 2.1.

There has been a significant theoretical effort to express discrete deposition and diffusion
rules provided by growth models in the continuum limit by a stochastic differential equation [8].
This can be done with phenomenological [9] or systematic [1] approaches. As a result, Langevin
equations with solutions that exhibit the same scaling as the original models are obtained. It
has been proposed [9, 10] that the DT model is described by the Villain–Lai–Das Sarma (VLDS)
equation:

∂h

∂t
= ν4∇4h+ λ22∇2(∇h)2 + η(~x, t), (2)
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where the surface configuration H is now the continuous function h(~x, t), ν4 and λ22 are constants
and η is Gaussian white noise. In d = 1, this equation yields the critical exponents α = 1, β = 1

3
and z = 3.

The DT model has attracted theoretical interest due to a significant discrepancy between
the critical exponents predicted by the VLDS equation and those calculated from simulations
of the discrete model. This discrepancy has been the motivation for our project. Our aim is to
first simulate the discrete model and elaborate further on the previous estimations of the critical
exponents. Then, we take a systematic approach to obtaining a Langevin equation, which is
not necessarily equivalent to the VLDS equation, and numerically integrate it to see whether
the continuum description agrees with the discrete model.

2 Theory

2.1 The DT model

The DT model was proposed to “bridge the gap” between two types of growth models: kinetic
growth and MBE growth [11].

In kinetic growth models, interactions between the deposited particles and the surface have
no characteristic time scale. Any diffusion or relaxation of particles occur instantaneously.
Furthermore, it follows from the lack of a time scale that atoms are allowed to relax only once,
after which they are fully incorporated into the surface. Examples of kinetic growth include
random deposition, ballistic deposition, Edwards-Wilkinson and Wolf-Villain models [6, 11, 12].
It was found that a lot of kinetic growth models belong to the KPZ universality class [13, 14, 15].

In MBE growth, each particle hops between lattice sites with some hopping rate. The
rate increases with temperature and decreases with the number of nearest neighbour bonds the
hopping atom has at its initial lattice site. This makes the particles “prefer” sites with more
nearest neighbour bonds. In this context, a bond is formed whenever two particles are adjacent.
MBE growth differs from kinetic growth since there is a characteristic time scale defined by the
hopping rate and belongs to its own universality class [11].

The DT model incorporates the diffusion in MBE growth without introducing a hopping
rate. As sites with more nearest neighbour bonds are preferred, deposited particles in the DT
model relax to the nearest kink site up to the nearest neighbours of the deposition site. In 1D,
a site i is a kink site if hi+1 > hi or hi−1 > hi. Particles are only allowed to diffuse once, and
diffusion happens instantaneously. This makes the DT model belong to kinetic growth.

Figure 1: The growth rules for the DT model. Red arrows indicate the columns the particles are
incident at. Blue arrows show where the particles diffuse.
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The growth rules of the DT model are as follows: A site is chosen at random. If it is a kink
site, the particle immediately sticks onto the chosen site. Otherwise, the particles relaxes to a
nearest neighbour kink site. If both nearest neighbours are kink sites, one is chosen at random
with equal probability. Finally, if neither nearest neighbours are kink sites, the particle sticks
onto the initial site. These rules are summarised in Figure 1.

The Wolf-Villain (WV) model, proposed after the DT model, also attempts to describe MBE
growth without incorporating continuous diffusion [12]. Again, kink sites are preferred due to
the same physical motivation. However, in the WV model, the particles relax such that the
coordination number is maximised, meaning not all kink sites are treated equally. Although
the two models are very similar, the WV model was shown to belong to the Edwards-Wilkinson
universality class [16].

2.2 Dynamic scaling

As the surface evolves in time, it does so with a certain structure. This is characterized by
the fluctuations about the mean height of the surface. A measure of these fluctuations is the
“surface width”, defined for a surface of length L in d dimensions as

W (L, t) =

[〈
1

Ld

∑
i

(
hi − h

)2〉]1/2

, (3)

where 〈·〉 denotes an average over realizations, the index i runs over all lattice sites and h is the
mean height. Due to a lack of a characteristic length or time scale, the width is expected to
scale as a power law in time [3]:

W (L, t) ∝ tβ , (4)

where β is referred to as the “growth exponent” and describes how the correlations in the
direction of growth increase with time.

For a finite surface of size L, the length over which fluctuations are correlated along the
lattice can only grow up to L. If the system is evolved long enough, the correlations must
saturate at L. Again, due to scale invariance, this finite-size effect is expected to give a scaling
relation of the form [3]:

W (L, t→∞) ∝ Lα, (5)

where α is called the “roughness exponent”.
Relations (4) and (5) can be combined into a single scaling relation:

W (L, t) = Lαf
(
tL−α/β

)
, where f(u) =

{
uβ u� 1,

constant u� 1.
(6)

This dynamic scaling yields a characteristic “correlation time” τ ∼ Lα/β , where the width
saturates for t� τ . This motivates the definition of the “dynamic scaling exponent” z ≡ α/β.

The three exponents α, β and z, two of which are independent, define the universality class
for any surface growth model. Finally, we note that the scaling relation (6) can be expressed
independent of L under the rescaling of t and W as follows:

t 7−→ t′ = tL−z, W 7−→W ′ = WL−α =⇒ W ′(L, t′) = f(t′). (7)

This rescaling will be used later on to obtain data collapse plots.
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2.3 The Langevin equation

In this section, we present the systematic method proposed by Vvedensky et al. [1] to obtain a
Langevin equation given the growth rules of a system. This is then applied to the DT model.

From equation (1), recall that the configuration of the surface is specified by H. Let P (H, t)
be the probability that the surface has configuration H at time t. The evolution of P (H, t) is
given by the master equation [17]

∂P (H, t)

∂t
=
∑
H′

W (H′;H)P (H′, t)−
∑
H′

W (H;H′)P (H, t), (8)

where W (H;H′) is the transition rate from configuration H to H′ and the sums run over all
possible configurations H′.

In the limit of large system size, it has been shown by a limit theorem of Kurtz [18, 19, 20]
that the master equation reduces to the Fokker-Planck equation:

∂P (H, t)

∂t
= −

∑
i

∂

∂hi

[
K

(1)
i (H)P (H, t)

]
+

1

2

∑
ij

∂2

∂hi∂hj

[
K

(2)
ij (H)P (H, t)

]
, (9)

where K
(1)
i (H) and K

(2)
ij (H) are the first and second transition moments of the transition rate

W (H;H′), defined by

K
(1)
i (H) =

∑
H′

(h′i − hi)W (H;H′), (10)

K
(2)
ij (H) =

∑
H′

(h′i − hi)(h′j − hj)W (H;H′). (11)

The Fokker-Planck equation (9) is equivalent to the following Langevin equation in the Itô
convention for stochastic calculus [21]:

dhi
dt

= K
(1)
i (H) + ηi(t), (12)

where the noise ηi has mean and variance

〈ηi(t)〉 = 0 (13)

〈ηi(t)ηj(t′)〉 = δ(t− t′)K(2)
ij (H). (14)

The transition rate W (H;H′) and the associated moments K
(1)
i and K

(2)
ij are determined from

the growth rules of the model. First, we let the lattice constant in the direction of growth be
a, so if a particle sticks onto site i, hi → hi + a. Also, we define the average deposition time for
a monolayer (L particles) to be τ0. In the DT model in one dimension, a particle can do one
of three things: stick onto the incident site, diffuse left or right. We separate these three cases
and write the transition rate as

W (H;H′) =
a

τ0

∑
k

w(1)
k δ(h′k, hk + a)

∏
j 6=k

δ(h′j , hj) + w
(2)
k δ(h′k−1, hk−1 + a)

∏
j 6=k−1

δ(h′j , hj)

+w
(3)
k δ(h′k+1, hk+1 + a)

∏
j 6=k+1

δ(h′j , hj)

 ,
(15)
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where the first term accounts for a particle deposited at site k to stick at the deposited site, the

second term for it to diffuse to k− 1 and the third to diffuse to k+ 1. Each of the w
(1,2,3)
k gives

the probability to stick at the deposited site, diffuse left and right given a surface configuration
H. To mathematically formulate the growth rules, the following definitions are used:

θ(x) =

{
1 x ≥ 0

0 x < 0
, and δ(x, y) =

{
1 x = y

0 x 6= y
. (16)

For example, a transition which would happen if hi > hj would have a transition probability

(1 − θ(hj − hi)). The transition probabilities w
(1,2,3)
k are therefore written considering every

possible local surface configuration. For instance, consider w
(1)
k , which is the probability for a

particle deposited at site k to stick at site k. Every possible surface configuration which will
result in this can be listed as follows:

1. Site k is a kink =⇒ hk+1 > hk or hk−1 > hk.

(a) hk+1 > hk and hk−1 > hk ⇐⇒ (1− θ(hk − hk+1))(1− θ(hk − hk−1)).

(b) hk+1 > hk and hk−1 ≤ hk ⇐⇒ (1− θ(hk − hk+1))θ(hk − hk−1).

(c) hk+1 ≤ hk and hk−1 > hk ⇐⇒ θ(hk − hk+1)(1− θ(hk − hk−1)).

2. Site k is not a kink =⇒ sites k ± 1 cannot be kinks.

(d) hk = hk+1 = hk−1 and hk−2 ≤ hk−1 and hk+2 ≤ hk+1

⇐⇒ δ(hk, hk+1)δ(hk, hk−1)θ(hk+1 − hk+2)θ(hk−1 − hk−2).

Since all of these cases are mutually exclusive, the transition probability w
(1)
k is the sum

w
(1)
k =(1− θ(hk − hk+1))(1− θ(hk − hk−1))

+ (1− θ(hk − hk+1))θ(hk − hk−1)

+ θ(hk − hk+1)(1− θ(hk − hk−1))

+ δ(hk, hk+1)δ(hk, hk−1)θ(hk+1 − hk+2)θ(hk−1 − hk−2).

(17)

The transition probabilities w
(2,3)
k are written following the same method. The identity

w
(1)
k + w

(2)
k + w

(3)
k = 1 (18)

holds as expected. Substituting expression (15) into equations (10) and (11) yields

K
(1)
i (H) =

a

τ0

[
w

(1)
i + w

(2)
i+1 + w

(3)
i−1

]
, (19)

K
(2)
ij (H) = aK

(1)
i δij . (20)

The continuum limit corresponds to letting a → 0 and τ0 → 0 such that a/τ0 → constant.
Then, the surface configuration becomes a continuous function H(t)→ h(~x, t). After an analytic
expansion of the transition rates w(1,2,3) is performed, the leading terms in a was shown to
reproduce the VLDS equation [10]. However, we won’t follow this approach and instead discretise
equation (12) directly.

The Langevin equation is discretised in the Itô interpretation as follows [8, 22]:

hi(t+ ∆t) = hi(t) + ∆tK
(1)
i (H) +

[
∆tK

(1)
i (H)

]1/2
ξi(t), (21)

where the noise ξi(t) obeys

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′).
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2.4 Step function regularization

Note that the Langevin equation (12) is expressed in terms of the transition probabilities w(1,2,3),
each of which is expressed in terms of the step and delta functions defined by (16). In the discrete
model, x = hi − hj takes on only integer values. However, in the continuum limit the height
differences can take any real value. We must choose an appropriate continuation of the step
function in the range x ∈ [−1, 0] such that the growth rules of the model are preserved. A simple
regularization that was shown to work is [8]:

θ(x; a) =


1 x ≥ 0,

(x+ a)/a −a < x < 0,

0 x ≤ −a,
(22)

where a ∈ (0, 1]. The parameter a is chosen such that the growth rules of the model are preserved
for non-integer height differences.

Figure 2: Step function with (left) no regularization and (right) regularization with some a < 1.

It was shown [8] that for the Edwards-Wilkinson model a = 0 and for the Wolf-Villain
model a = 1. Due to the similarities between WV and DT models, we would expect the correct
regularization for the DT model to be a = 1. Moreover, there is physical motivation to justify
setting a = 1. When the height differences can take any real value, the probability of neighboring
heights being equal becomes zero. This means the transition rules that depend on equal heights
are never applied. As mentioned in section 2.1, the rules of the DT model are motivated by
the MBE process where the number of bonds determine how energetically preferable a site is.
Setting a = 0 would correspond to a sharp transition where an infinitesimal height difference
becomes physically equivalent creating or breaking a bond. This can be avoided by applying
the rules gradually, setting a = 1. This is also confirmed by data, shown in section 4.2.

3 Computational Methods

3.1 Methods for simulations

All simulations were coded in C++. For the discrete model, the deposition rules are checked and
applied given the local surface configurations. Firstly, the surface is represented by an array of
integers which we will refer to as the “surface array”. Each position in the array corresponds to a
lattice site, with the associated integer value corresponding to the number of particles deposited
to that site. For a surface of length L, an array of size L is created. Periodic boundary conditions
are applied.
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The surface array is initialized flat, with zero height at every site. Particles are deposited as
follows: First, a random site is chosen. A check is performed to determine whether the chosen
site, or the two nearest neighbours are kink sites or not. Then, the particle is placed on the
surface array according to the growth rules.

The Mersenne twister engine (std::mt19937) was used to generate random numbers. As
particles were deposited, the width of the surface was calculated on evenly spaced time intervals
on a logarithmic scale. Typically, consecutive measurements were taken at times tn+1 = λtn
where λ = 1.01. In all simulations, a time unit corresponds to the deposition of a monolayer.
For a lattice of size L, a time unit would be the deposition of L particles.

Due to the randomness in the growth process, every simulation was repeated and the width
averaged over multiple realizations. As the time unit depends on L, the process is “self-
averaging”. For larger lattices, fewer realizations are sufficient to obtain smoother data.

Since the correlation time τ scales with a power law in L (see section 2.2), simulation times
increase very rapidly with increasing L. Assuming that the total number of depositions in a
simulation is proportional to the computational time, simulations ran until time τ have time
complexity O

(
L1+z

)
, where typically z ∼ 3. This presented two problems for the simulation:

overflows in the surface array entries and long computing times.
To prevent overflows, the surface array was periodically “reduced”. This means the minimum

height of the surface array was subtracted from each entry. The simulations were coded in C++
for higher computing performance. Finally, both discrete and continuum simulations were run
in the High Performance Computing (HPC) cluster at Imperial College.

Numerical integration of the Langevin equation is done by evolving equation (21) by Euler’s

method. The first moment of the transition rate K
(1)
i is expressed explicitly in terms of w(1,2,3).

Armadillo library [23] is used for linear algebra. The same method for calculating the width
averaged over many realizations is implemented.

3.2 Methods for exponent analysis

Here, we outline the methods we used to extract the critical exponents α, β and z.
Exponents α and β are related to the behaviour of the width in the saturation and growth

regimes respectively. Therefore, we needed a systematic way of identifying the two regimes. By
the scaling relation (6), the width is linear in time on a logarithmic scale in both regimes with
gradient β in the growth, and zero gradient in the saturation regime. This allowed us to identify
the two regimes by considering the goodness of linear fits.

For the saturation regime, we considered linear fits starting from some point t0 = 103, ending
at the last data point. Then, we incrementally moved the starting point t0 up to the end, each
time calculating the R2-coefficient of the corresponding linear fit. We define the saturation
regime to begin at the time corresponding to the first local minimum of the R2 value. The
global minimum was unreliable due to the noise in the saturation regime.

Similarly, for the growth regime, we considered linear fits from t0 = 103 up to the end. Then,
we incrementally moved the end point down to t0, calculating the R2 coefficient. As the growth
regime had much less noise, we defined the end of the growth regime to be the global minimum
of the R2 value. An illustration of the results of this method is shown on Figure 3. A different
method using the R2 coefficient was previously proposed by Aarão Reis et al. [24].

The roughness exponent α is related to the saturation width. One way to extract α is to plot
the saturation width against the lattice size L. Then, α would correspond to the gradient on
a logarithmic scale. However, just calculating the gradient would result in “averaging out” any
relationship between α and L due to finite size effects, which in turn would yield an unreliable
asymptotic value for α as L → ∞. Instead, we used the following definition for the roughness
exponent [24]:

αL =
log(Wsat(L))− log(Wsat(L/2))

log 2
, (23)
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Figure 3: Growth, crossover and saturation regimes, shown in blue, green and red, of discrete simula-
tions for lattice sizes L = 256, 512 shown by dashed and dotted curves.

where Wsat(L) is the saturation with for lattice size L. As L→∞, αL is expected to converge to
an asymptotic value. Looking at how αL varies with L, the asymptotic value for α is estimated.

The growth exponent β was estimated from the gradient of the linear fit in the growth
region. Since the saturation width does not play a role, we ran shorter simulations for much
larger lattice sizes, up to L = 16384, for times until t = 105. Then, β was estimated from the
linear fit in the time range t ∈ [103, 105].

Finally, the dynamical exponent z was obtained from the saturation time τ . On a logarithmic
scale, it corresponds to the gradient of τ with respect to L due to the relation τ ∝ Lz. A similar
definition to the roughness exponent may be used, so that

zL =
log(τ(L))− log(τ(L/2))

log 2
.

But finite size effects did not display any significant correlation between τL and L and so this
method was not implemented.

4 Results

4.1 Discrete model

First, we simulated the DT model according to the discrete growth rules. The simulations shown
on Figure 4 were run until the widths saturated for lattice sizes up to L = 512. The scaling form
given by equation (6) is clearly observed. As the lattice size was increased, due to the rapidly
increasing computation times, the number of realizations was decreased. This accounts for the
increase in noise for the larger lattice sizes, visible most clearly in the saturation region.

The roughness exponent is estimated by a method proposed in [24]. By equation (23), αL is
calculated. Then, a correction term L−∆ to equation (5) is considered of the form

αL = α+ L−2∆ + L−∆,

where α is the asymptotic value of αL as L → ∞. A second-degree polynomial is fitted to the
data on a αL ×L−∆ plot. The correction ∆ is chosen such that the fit covariance is minimised.
This turned out to be ∆ = 0.3868±0.0001. The result is shown on Figure 5a, alongside a plot of
αL×L on Figure 5b which shows how the roughness exponent changes due to finite-size effects.
The asymptotic value of α is estimated to be α = 1.07 ± 0.02, where the errors are obtained
from the covariance of the fit.
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Figure 4: Time evolution of the surface width for different lattice sizes L ≤ 512 in the discrete DT
model.

(a) (b)

Figure 5: Roughness exponent αL as a function of (a) the correction L−∆ with a second degree
polynomial fit, and (b) lattice size L.

For the growth exponent, the results of the larger simulations are summarised on Table 1,
obtained by the method outlined in section 3.2. The errors are estimated from the covariance
of the fit. Since there is no clear trend towards an asymptotic value, we conclude that the
variations in β are due to the randomness of the growth process and the limited number of
realizations. The average value of β is β = 0.3663± 0.0002.

Lattice Size β
2048 0.3645± 10−4

4096 0.3668± 10−4

8192 0.36739± 9× 10−5

16384 0.36654± 9× 10−5

Table 1: β values obtained from linear fits in the time range t ∈ [103, 105] with 250 realizations.

The dynamical exponent z is estimated from the saturation time τ . A plot of τ ×L is shown
on Figure 6, with a fit that is linear on logarithmic scale. The gradient of the fit gives the
estimate z = 3.33± 0.07, where the error is again obtained from the covariance of fit.
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Figure 6: The saturation time τ against lattice size L, for lattice sizes up to L = 1024. The linear fit
is shown in red.

The estimate obtained for z is not consistent with α and β, considering the relationship
z = α/β. However, the value is similar to that obtained by Costa, Euzebio and Aarao Reis [24].
The discrepancy may be due to different scaling behaviour at larger lattice sizes.

(a) (b)

Figure 7: Data collapse plot for exponents (a) β = 0.3663, α = 1.07, and (b) α = 1.31. The dynamical
exponent is z = α/β.

Finally, using the estimates for the exponents, we may rescale the time and width axes
according to equation (7) to obtain a data collapse plot. This is shown on Figure 7 for two
different values for α. On Figure 7a, the asymptotic value for α = 1.07 is used. It is clear that
the saturation widths for the lattice sizes shown do not overlap. This is due to finite-size effects,
and shows that the lattice sizes are not large enough to obey the asymptotic exponents. On
Figure 7b, αL = 1.31 is used. This is the roughness exponent calculated by equation (23) for
L = 256. The overlap in the saturation regime is much better for this choice of α as expected.
In both cases, the growth regime shows good overlap. This shows that the asymptotic scaling
behaviour in the growth region is very similar to the scaling seen in the simulations for finite
size lattices.
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4.2 Continuum equation

All results presented in this section follow from numerical integration of equation (21) with
various time steps. First, the convergence to the discrete model for different time steps and
regularizations is shown. This is followed by a similar analysis of the exponents α, β and z.

In section 2.4, we emphasized the importance of choosing the correct regularization for
the step function. Here, we present the quantitative difference between different choices of
regularization. On Figure 8a, the results of integrating the Langevin equation with two different
regularizations are shown for L = 16 and ∆t = 0.001. The regularization given by equation (22)
is implemented with a = 1.0 and a = 0.01. As expected, the continuum results converge on to
the discrete model when a = 1.0.

It is expected that as the numerical integration is carried out with smaller time steps, in the
limit ∆t→ 0 the continuum results converge to the simulations of the discrete model. Figure 8b
shows the results of integrating with two different time steps for L = 128 and a = 1.0. As the
time step is lowered, a better overlap between the continuum results and the discrete simulation
is observed. Although the overlap in the saturation regime is significant for ∆t = 0.1, the growth
regime still shows discrepancies. This suggests a slower convergence between the continuous and
discrete simulations in the growth regime.

(a) Different regularizations a at fixed time step
∆t = 0.001 and lattice size L = 16.

(b) Different time steps ∆t at fixed regularization
a = 1.0 and lattice size L = 128.

Figure 8: Convergence of the numerical integration of the Langevin equation for different step function
regularizations and time steps.

The results for numerically integrating the Langevin equation starting from L = 8 up to
L = 128 with time step ∆t = 0.1 and regularization a = 1.0 is shown on Figure 9. We can
identify the growth and saturation regimes clearly and the results obey the general scaling
relation given by equation (6).

Due to the much greater computational cost of integrating the Langevin equation compared
to the discrete model, the data for the continuum simulations is limited. This means the analysis
of the critical exponents will be less reliable compared to the discrete simulations.

The roughness exponent is estimated following a similar method used for the discrete model.
Instead of a second degree polynomial, a linear fit is used with correction exponent ∆ = 0.45865±
0.0001, so that

αL = α+ L−∆.

This method was previously used to estimate KPZ exponents from the ballistic deposition
model [25]. The results are shown on Figure 10. The asymptotic value for αL is obtained by
extrapolating the linear fit shown on Figure 10b. This gives α = 1.25±0.01. This is significantly
different from the roughness exponent obtained from the discrete simulations.
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Figure 9: Results of numerically integrating the Langevin equation with time step ∆t = 0.1 for lattice
sizes L ≤ 128.

(a) (b)

Figure 10: Roughness exponent αL as a function of (a) L and (b) L−∆ with a linear fit shown in red.

The growth exponent β is estimated in the same manner as before. Results of the larger
simulations are shown on Table 2. Errors are obtained from the covariances of the linear fits.
The average β is β = 0.3691± 0.0006. This is in closer agreement with the discrete model.

Lattice Size β
512 0.3604± 0.0003
1024 0.3739± 0.0003
2048 0.3730± 0.0004

Table 2: β values obtained from linear fits in the time range t ∈ [103, 104] with 100 realizations.

Finally, we follow the same method as before to obtain an estimate for the dynamical ex-
ponent z. A plot of τ × L is shown, with an associated fit on Figure 11. The z value obtained
from the gradient is z = 3.5± 0.2. This result agrees with the simulations of the discrete model
within uncertainty. We can estimate z by the relation α/β, which gives

z =
α

β
= 3.39± 0.03,

which is consistent with the estimate for z obtained from the saturation time.
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Figure 11: Saturation time τ against L, with a fit linear on a logarithmic scale.

Combining the estimates for α, β and z, we can again obtain a data collapse plot. For
α = 1.25 and β = 0.3691, this is shown on Figure 12. The overlap in both the growth and
saturation regimes are good. This is not surprising as the asymptotic value estimated for α is
much closer to αL for L = 128. Compared to the discrete simulations, finite size effects are less
prominent especially regarding the saturation width.

Figure 12: Data collapse of continuum simulations for α = 1.25, β = 0.3691 and z = α/β.

Differences between the critical exponents and their dependence on finite-size effects observed
between the discrete and continuum simulations may be due to a number of different factors.
Firstly, the data for the continuum simulations are much more limited in terms of the lattice
sizes considered. Furthermore, the time step used for the continuum simulations may not be
small enough to exhibit the same finite-size effects as the discrete DT model in the continuum
limit.

5 Conclusion

We simulated the Das Sarma-Tamborenea (DT) model for MBE growth in one dimensional
surfaces. Using the dynamical scaling of the surface width, we estimated asymptotic values for
the critical exponents α, β and z. The roughness exponent was estimated to be α = 1.07± 0.02
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by an analysis of finite-size effects, in agreement with previous results [24]. For the growth
exponent, shorter simulations were carried out for much larger lattices. This yielded an average
value of β = 0.3663± 0.0002. Finally, the dynamical exponent was found to be z = 3.33± 0.07,
which was estimated using the saturation time. Our asymptotic estimates are not consistent
with the relation z = α/β, which suggests the presence of different scaling behaviour for larger
lattice sizes. The discrepancies may be resolved by running simulations for larger lattices, which
we were unable to do due to time constraints.

The description of the DT model in the continuum limit was also studied. We followed the
method proposed by Vvedensky et. al. [1] to obtain a Langevin equation [10]. After applying an
appropriate step function regularization, we numerically integrated the Langevin equation. This
showed that, with the correct regularization, the solutions of the Langevin equation converge to
the simulations of the DT model as the time step is lowered. Afterwards, a similar analysis of
the critical exponents was carried out for the continuum simulations with time step ∆t = 0.1.
This yielded the values α = 1.25± 0.01, β = 0.3691± 0.0006 and z = 3.5± 0.2. The dynamical
and growth exponents are close to the discrete model, however the roughness exponent shows
significant discrepancy. These discrepancies can again be further studied by running simulations
for larger lattice sizes with smaller time steps.

Compared with the predictions of the VLDS equation which suggest α = 1, β = 1
3 and

z = 3, our results are significantly different. Only the estimate for the roughness exponent for
the discrete model shows good agreement, whereas the growth and dynamical exponents differ
significantly. This discrepancy persists for the simulations of the continuum model as well, which
confirms that the DT model exhibits significantly different scaling for larger lattice sizes. The
agreement between the numerical integration of the Langevin equation and the simulations of the
discrete model shows the validity of the systematic method used to obtain the Langevin equation,
and further suggests that equation (12) may reduce to the VLDS equation in the continuum
limit of the lattice constant a → 0. A more detailed analysis of taking this limit, including
further analysis using renormalization group theory as well as running larger simulations of the
discrete model would be appropriate extensions of the work presented here.
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