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1 RIGID BODY ROTATION

1 Rigid Body Rotation

(Summation convention sometimes used in this chapter, should be clear from context.)

1.1 Basics of rigid bodies

A body is a collection of particles. We consider a set of N particles with positions ~ra(t) and
masses ma, where a = 1, . . . , N . Each particle obeys the equation of motion

ma~̈ra =
∑
b 6=a

~Fab + ~F ext
a , (1.1)

where ~Fab is the force on particle a due to b and ~F ext
a is the sum of all external forces on a. It

is mathematically convenient to define ~Faa ≡ 0 and to take the sum over all b instead of over
b 6= a.

The total mass M of the body is

M =
∑
a

ma. (1.2)

The centre of mass ~R is defined as

~R =
1

M

∑
a

ma~ra ⇒ ~̇R =
1

M

∑
a

ma~̇ra, (1.3)

which is just a weighted average with weights of ma/M . In the continuum limit, we have

ma → ρ(~r) ⇒ M =

∫
V

ρ(~r) d3r , and ~R =
1

M

∫
V

ρ(~r)~r d3r . (1.4)

Similarly, the total momentum ~P of the body is

~P =
∑
a

~pa =
∑
a

ma~̇ra = M ~̇R. (1.5)

It then follows that

~̇P =
∑
a

ma~̈ra =
∑
a

(∑
b

~Fab + ~F ext
a

)
=
∑
ab

~Fab +
∑
a

~F ext
a . (1.6)

By Newton’s third law, we have

~Fab = −~Fba ⇒
∑
ab

~Fab ≡ 0. (1.7)

Hence, we have
~̇P = M ~̈R =

∑
a

~F ext
a . (1.8)

So, total momentum of the body is conserved if no external forces act on the body with internal
forces having no effect.

The total angular momentum ~L is

~L =
∑
a

~̀
a =

∑
a

~ra × ~pa =
∑
a

ma~ra × ~̇ra. (1.9)
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1.1 Basics of rigid bodies 1 RIGID BODY ROTATION

The rate of change of total angular momentum is then

~̇L =
∑
a

ma
d

dt

(
~ra × ~̇ra

)
=
∑
a

ma

(
~̇ra × ~̇ra + ~ra × ~̈ra

)
=
∑
a

ma~ra × ~̈ra

=
∑
a

~ra ×

(∑
b

~Fab + ~F ext
a

)
=
∑
ab

~ra × ~Fab +
∑
a

~ra × ~F ext
a .

(1.10)

Let’s inspect the first term. It follows from Newton’s third law that∑
ab

~ra × ~Fab = −
∑
ab

~ra × ~Fba.

Since the indices a and b are dummy indices, we can relabel a↔ b to obtain∑
ab

~ra × ~Fab =
∑
ab

−~rb × ~Fab ⇒
∑
ab

~ra × ~Fab =
1

2

∑
ab

(~ra − ~rb)× ~Fab. (1.11)

If the inter-particle forces are central, the force ~Fab points in the direction of the separation
vector ~rab ≡ ~ra − ~rb. Hence, the contribution above becomes identically zero and we get

~̇L =
∑
a

~ra × ~F ext
a ≡ ~τ , (1.12)

where ~τ is the total torque on the body due to external forces. We again see that the inter-
particle forces are averaged out as far as the total angular momentum is concerned.

Finally, we look at how the motion of the body decouples into centre of mass motion and
relative motion about the centre of mass. We define the position relative to the centre of mass:

~r ∗ = ~r − ~R. (1.13)

Then, we have ∑
a

ma~r
∗
a =

∑
a

ma

(
~ra − ~R

)
= M ~R−M ~R ≡ 0, (1.14)

as expected. The total linear momentum about the centre of mass is also identically zero,

~P ∗ =
∑
a

ma~r
∗
a =

∑
a

ma(~ra − ~R) = M ~R−M ~R ≡ 0 ⇒ ~̇P ∗ ≡ 0. (1.15)

The total angular momentum is expressed in terms of ~r ∗a as follows:

~L =
∑
a

ma~ra × ~̇ra =
∑
a

ma

(
~r ∗a + ~R

)
×
(
~̇r ∗a + ~̇R

)
=
∑
a

ma

[
~r ∗a × ~̇r ∗a + ~r ∗a × Ṙ+ ~R× ~̇r ∗a + ~R× ~̇R

]
=
∑
a

ma~r
∗
a × ~̇r ∗a +

(∑
a

ma~r
∗
a

)
× Ṙ+ ~R×

(∑
a

ma~̇r
∗
a

)
+M ~R× ~̇R

=
∑
a

ma~r
∗
a × ~̇r ∗a + ~R× ~P

≡ ~L ∗ + ~R× ~P ,

(1.16)
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1.2 Rotation 1 RIGID BODY ROTATION

where we defined the angular momentum about the central mass ~L ∗ =
∑
ama~r

∗
a × ~̇r ∗a . The

rate of change of ~L ∗ is given by

~̇L ∗ =
∑
a

ma~r
∗
a × ~̈r ∗a =

∑
a

ma

(
~ra − ~R

)
×
(
~̈ra − ~̈R

)
=
∑
a

ma~ra × ~̈ra −

(∑
a

ma~ra

)
× ~̈R− ~R×

(∑
a

ma~̈ra

)
+M ~R× ~̈R

=
∑
a

ma~ra × ~̈ra −M ~R× ~̈R

=
∑
a

~ra × ~F ext
a = ~R×

(∑
a

~F ext
a

)
=
∑
a

(
~ra − ~R

)
× ~F ext

a

=
∑
a

~r ∗a × ~F ext
a ,

(1.17)

where we assumed central inter-particle forces.
The total kinetic energy of the body is

T =
1

2

∑
a

ma

(
~̇ra · ~̇ra

)
=

1

2

∑
a

ma

(
~̇r ∗a + ~̇R

)
·
(
~̇r ∗a + ~̇R

)
=

1

2

∑
a

ma

(
~̇r ∗a · ~̇r ∗a + 2~̇r ∗a · ~̇R+ ~̇R · ~̇R

)
=

1

2

∑
a

ma~̇r
∗
a · ~̇r ∗a +

1

2
M ~̇R · ~̇R.

(1.18)

The first term is the kinetic energy about the centre of mass and the second term the kinetic
energy of the centre of mass. Hence, we see that both the kinetic energy and the angular
momentum decouple into a centre of mass part and a part about the centre of mass.

We conclude the section by stating that for a rigid body, |~ra − ~rb| ≡ 0 for all a and b by
definition.

1.2 Rotation

Consider a rigid body rotating about a point P . Define a fixed space frame {˜̂ea} and moving
body frame {êa(t)} which rotates with the body. We choose the basis vectors to be orthonormal:

˜̂ea · ˜̂eb = δab, and êa(t) · êb(t) = δab ∀ t. (1.19)

Proposition. For all t, there exists a unique, orthogonal matrix R(t) such that

êa(t) = Rab(t)˜̂eb. (1.20)

Proof. Construct R(t) by the rule

êa(t) = Rab(t)˜̂eb ⇔ Rab(t) = êa(t) · ˜̂eb.

Then, by orthonormality we have

δab = êa(t) · êb(t) = Rac(t)˜̂ec ·Rbd(t)˜̂ed = Rac(t)Rbd(t)δcd = RacRbc = RacR
T
cb = (RRT )ab.

Since RRT = 1, R is orthogonal. Finally, R is unique by construction.

So, the rotation of a rigid body may be completely specified by a 3×3 orthogonal matrix R(t).
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1.3 Angular velocity 1 RIGID BODY ROTATION

˜̂ez, êz(t)

˜̂ey

˜̂ex
êx(t)

êy(t)

ωt

ωt

Example (Rotation about fixed axis). Consider a ro-
tation with constant angular velocity ω about ˜̂ez as de-
picted to the right. We have

êx(t) = ˜̂ex cosωt+ ˜̂ey sinωt,

êy(t) = ˜̂ey cosωt− ˜̂ex sinωt,

êz(t) = ˜̂ez.

Writing this as a matrix equation we can recognise
R(t): êxêy

êz

 =

 cosωt sinωt 0
− sinωt cosωt 0

0 0 1

˜̂ex
˜̂ey
˜̂ez

.
1.3 Angular velocity

Any point ~r in the body can be written in space or
body frame:

~r(t) = r̃a(t)˜̂ea space frame,

= raêa(t) body frame.

By using the rotation matrix, we can relate the components r̃a(t) and ra as follows:

~r = raêa(t) = raRab(t)˜̂eb = r̃b(t)˜̂eb

⇒ r̃b(t) = raRab(t) ⇔ Rba(t)r̃b(t) = ra.

The velocity is

~v(t) =
d~r

dt
=
dr̃a(t)

dt
˜̂ea = ra

dêa(t)

dt
. (1.21)

Let’s have a look at the ˙̂ea(t) term:

dêa
dt

=
d

dt

[
Rab(t)˜̂eb

]
=
dRab
dt

˜̂eb. (1.22)

Substituting ˜̂eb = R−1
bc êc = Rcbêc yields

dêa
dt

= ṘabRcbêc ≡ ωacêc, (1.23)

where we defined ωac ≡ ṘabRcb.

Proposition. ω is antisymmetric.

Proof. Since R is orthogonal, we have

δac = RabRcb ⇒ 0 ≡ δ̇ac = ṘabRcb +RabṘcb = ωac + ωca,

hence ωac = −ωca.
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1.3 Angular velocity 1 RIGID BODY ROTATION

Since ω is antisymmetric, it has only 3 independent components. We can therefore define a
vector with components:

ωa ≡
1

2
εabcωbc. (1.24)

We treat ωa as the components of a vector in the body frame, so that

~ω = ωaêa. (1.25)

The reason we choose the body frame instead of the space frame will become apparent shortly.

Example (Rotation about fixed axis - again). Referring back to the previous example, let’s look
at ω and ~ω given R(t). By definition, ωac = ṘabRcb, hence

ω = ṘRT = ω

− sinωt cosωt 0
− cosωt − sinωt 0

0 0 0

cosωt − sinωt 0
sinωt cosωt 0

0 0 1

 =

 0 ω 0
−ω 0 0
0 0 0

.
Then, we can calculate components of ~ω by equation (1.24), which yields

~ω = ωêz,

where note again that the components are expressed in the body frame {êa(t)}.

Now, let’s write ωac in terms of ωa:

εadeωa =
1

2
εadeεabcωbc =

1

2
(δdbδec − δdcδeb)ωbc =

1

2
(ωde − ωed) = ωde.

Relabeling the indices we get:
ωac = εbacωb = −εabcωb. (1.26)

Now, we can rewrite dêa/dt as:

dêa
dt

= −εabcωbêc = ωb(êb × êa) = ~ω × êa, (1.27)

where we used that for right-handed coordinates êa × êb = εabcêc. Obtaining this relation was
the reason we defined the components of ~ω to be in the body frame. The vector ~ω is the
instantaneous angular velocity .

An important corollary of relation (1.27) is that given any vector ~A we have

~̇A = Ȧaêa +Aa ˙̂ea = Ȧaêa +Aa~ω × êa = Ȧaêa + ~ω × ~A. (1.28)

A special case is for the position vector, since ṙa = 0 for any point on the rotating body,

~̇r = ~ω × ~r. (1.29)

1.3.1 Inertial forces

As an aside, let’s not limit ourselves with a rotating rigid body but instead consider any rotating
frame. Suppose our frame rotates with angular velocity ~ω and we are interested in describing
the motion of some particle with position ~r(t). By Newton’s law,

m~̈r = ~F .

Noting that in the rotating frame ~r(t) = ra(t)êa(t), we have

~̇r = ṙaêa + ra~ω × êa = ~vR + ~ω × ~r, (1.30)

6
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1.4 Rotation about a fixed axis 1 RIGID BODY ROTATION

where we denote ~vR = ṙaêa 6= ~̇r. This is not the velocity of the particle but the velocity measured
in the rotating frame. Similarly,

r̈ = r̈aêa + ṙa~ω × êa + ṙa~ω × êa + ra~̇ω × êa + ra~ω × (~ω × êa)

= ~aR + 2~ω × ~vR + ~̇ω × ~r + ~ω × (~ω × ~r),
(1.31)

where ~aR denotes acceleration measured in the rotating frame. The equation of motion is

~aR =
~F

m
−
(

2~ω × ~vR + ~̇ω × ~r + ~ω × (~ω × ~r)
)
. (1.32)

The 3 extra terms on the right hand side are called fictitious forces. They arise due to the
motion of our frame.

~ω

λ

ŷ ẑ

x̂

Example (Foucault pendulum). Consider a pendulum of length
` and mass m, free to swing in the (x, y) plane in the coordinates
defined on the right. We ignore motion along ẑ. For the Earth,
we also set ~̇ω = ~0. Now, note that the centrifugal force ~ω×(~ω×~r)
points along ẑ. The net effect of this is to reduce the effective
gravitational acceleration, so let g denote this reduced value. For
small angles, the equation of motion with the Coriolis force is

r̈ = −g
`
~r − 2~ω × ~̇r,

where we ignore the z component. Evaluating the cross product
yields

ẍ− 2Ωẏ +
g

`
x = 0,

ÿ + 2Ωẋ+
g

`
y = 0,

where we defined ωz = ω sinλ = Ω. We can rewrite this, defining u = x+ iy as

ü+ 2iΩu̇+ ω2
0u = 0

where ω2
0 = g/`. The solution is given by

u(t) = e−iΩt
(
Aeiω1t +Be−iω1t

)
,

with ω1 =
√

Ω2 + ω2
0. Notice that Ω governs the rotation of the plane of swing.

1.4 Rotation about a fixed axis

~ω

~ra
ra⊥

First, let’s consider the simple case where the direction of ~ω is fixed. Let ~ω
point along ê3, so that ê3(t) = ˜̂e3 for all t. The total angular momentum along
ê3 is

L3 = ê3 ·
∑
a

ma~ra × (~ω × ~ra) =
∑
a

mar
2
a⊥ω = Iω, (1.33)

where we defined the moment of inertia about ê3 as I :=
∑
amar

2
a⊥, where

ra⊥ is shown on figure to the right. The moment of inertia arises naturally

7
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1.4 Rotation about a fixed axis 1 RIGID BODY ROTATION

from the kinetic energy as well:

T =
1

2

∑
a

ma~̇ra · ~̇ra =
1

2

∑
a

ma(~ω × ~ra) · (~ω × ~ra)

=
1

2

∑
a

ma

(
ω2r2

a − (~ω · ~ra)2
)

=
1

2

∑
a

ma

(
r2
a − (~ra · ê3)2

)
ω2

=
1

2

∑
a

mar
2
a⊥ω

2 =
1

2
Iω2,

(1.34)

where note that r2
a⊥ = r2

a − (ê3 · ~ra)2.

1.4.1 Support force

Suppose a free body rotates with some angular velocity ~ω. Then, it follows that the body must
rotate about its centre of mass, meaning ~ω should pass through the centre of mass position
~R. This is because, in the absence of external forces the centre of mass moves with constant
velocity. In the frame of reference where the centre of mass is stationary, we must have

~̇R = ~ω × ~R = ~0 ⇒ ~ω ‖ ~R. (1.35)

When the body doesn’t rotate about its centre of mass, external forces are required to keep the
rotation axis fixed. We write this condition as:

~F + ~Q = M ~̈R = M
(
~̇ω × ~R+ ~ω × (~ω × ~R) + ~ω × ~VR

)
, (1.36)

where ~VR denotes the centre of mass velocity as measured in the body frame. By definition,
~VR = ~0. ~F is the net external force acting on the centre of mass of the body, and ~Q is the
support force acting through the rotation axis.

êz

~F = m~g

θ R

~Q

êr

êθ

Example (Compound pendulum). Consider a com-
pound pendulum with moment of inertia of I about êz
and mass m with centre of mass a distance R away from
the pivot. The equation of motion is:

θ̈ =
mgR

I
sin θ,

along with energy conservation:

1

2
Iθ̇2 −mgR cos θ = E.

Note that ~ω = θ̇êz and ~R = Rêr. Then, the inertial
forces are:

~̇ω × ~R = Rθ̈ êθ, ~ω × (~ω × ~R) = −Rθ̇2êr.

Finally, in the body frame the external force is

~F = mg(cos θ êr − sin θ êθ).

Putting everything together and substituting for θ̇ and θ̈, we find that the support force is

~Q = mg sin θ

(
1− mR2

I

)
êθ −

(
mg cos θ

[
1 +

2mR2

I

]
+

2mR

I
E

)
êr.

This does not necessarily act radially, as the êθ component is non-zero for I 6= mR2.
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1.5 Inertia tensor 1 RIGID BODY ROTATION

1.5 Inertia tensor

The inertia tensor generalises the moment of inertia to rotations about arbitrary axes. It again
arises naturally from the angular momentum and kinetic energy. The angular momentum is

~L =
∑
i

mi~ri × ~̇ri =
∑
i

mi~ri × (~ω × ~ri)

=
∑
i

miêaεabcri,bεcdeωdri,e

= êa
∑
i

mi(δadδbe − δaeδbd)ri,bωdri,e

= êa
∑
i

mi

(
r2
i ωa − ri,ari,bωb

)
= êa

∑
i

mi

(
r2
i δab − ri,ari,b

)
ωb.

(1.37)

Hence, we see that the components of ~L are

La =
∑
i

mi

(
r2
i δab − ri,ari,b

)
ωb ≡ Iabωb, (1.38)

where we defined the inertia tensor I with components

Iab :=
∑
i

mi

(
r2
i δab − ri,ari,b

)
. (1.39)

Now, consider the kinetic energy:

T =
1

2

∑
i

mi~̇ri · ~̇ri =
1

2

∑
i

mi(~ω × ~ri) · (~ω × ~ri)

=
1

2

∑
i

mi(εabcωbri,c)(εadeωdri,e)

=
1

2

∑
i

mi(δbdδce − δbeδcd)ωbωdri,cri,e

=
1

2

∑
i

mi

(
r2
i δbc − ri,cri,b

)
ωbωc

=
1

2
ωbIbcωc =

1

2
~ω · I~ω.

(1.40)

From the definition of the inertia tensor (1.39), it follows that I is symmetric:

Iab =
∑
i

mi

(
r2
i δab − ri,ari,b

)
=
∑
i

mi

(
r2
i δba − ri,bri,a

)
= Iba. (1.41)

The components of the inertia tensor are measured in the body frame because we used the
relation (1.29). Since the components of the position vector ri are time-independent in the
body frame, so are the components of I.

The inertia tensor generalizes to continuous bodies as follows:

I =

∫
d3r ρ(~r)

y2 + z2 −xy −xz
−yx z2 + x2 −yz
−zx −zy x2 + y2

, (1.42)
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1.5 Inertia tensor 1 RIGID BODY ROTATION

where we denote the position vector in the body frame as

~r = xê1 + yê2 + zê3.

Since the inertia tensor is a real, symmetric matrix, we can diagonalise it by an orthogonal
transformation: I ′ = OIOT and ê′a = Oêa where O is an orthogonal matrix. This would yield

I =

I1 I2
I3

. (1.43)

The body axes in which I is diagonal are called the principal axes. Eigenvalues I1,2,3 are called
the principal moments. The angular momentum and kinetic energy take particularly simple
forms under this choice of axes:

~L = I1ω1ê1 + I2ω2ê2 + I3ω3ê3 and T =
1

2

(
I1ω

2
1 ê1 + I2ω

2
2 ê2 + I3ω

2
3 ê3

)
. (1.44)

If any two principal moments are equal, Ii = Ij , then the body is said to be symmetric.
Then, any two perpendicular vectors lying in the plane spanned by êi and êj are also principal
axes. To see why, set I2 = I3 and consider a rotation by angle θ around ê1:

I ′ = OIOT =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

I1 I2
I2

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 =

I1 I2
I2

 = I.

If all principal moments are equal, the body is said to be totally symmetric. In this case, any
three mutually orthonormal vectors are principal axes.

êy êx

êz

`

1.5.1 Examples

Example (Rigid rod). Consider a rigid, one dimensional rod of
mass m with length ` along êx, as shown on the figure. The centre
of mass is located at the origin. The mass density is

ρ(~r) =

{
m/` y = z = 0, |x| ≤ `/2,
0 otherwise.

Setting y = z = 0 in equation (1.42) yields I11 = 0, Iij = 0 for all i 6= j, and

I22 = I33 =

∫ `/2

−`/2
dx

m

`
x2 =

m`2

12
.

The body is symmetric, as we would expect. Since the body has no extension along êy or êz, the
principal moment along êx is zero. As all non-diagonal terms in I are zero, êx,y,z are principal
axes.

Example (Line of beads). Consider a line of N equidistant beads of equal mass along the x
axis as shown on the figure. Enumerate beads by i = 1, . . . , N so that the position of the i-th
bead is

xi = − `
2

+
`(i− 1)

(N − 1)
, yi = zi = 0.

The inertia tensor is

I =

N∑
i=1

M

N

0 0 0
0 x2

i 0
0 0 x2

i


10
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1.5 Inertia tensor 1 RIGID BODY ROTATION

êy êx

êz

`

`/(N − 1)

where M is the total mass. By symmetry, we again have I22 = I33. Performing the sum yields

I22 = I33 = M`2
(

2N − 1

6(N − 1)
− 1

4

)
.

As a sanity check, note that this is always positive for N ≥ 2. Furthermore, in the limit N →∞,
we recover the moment for rigid rod.

êx

êy

êz

a

êx
êy

êz

a

Example (Cube). Consider cube of side length a and total mass M . The mass distribution is
uniform:

ρ(~r) =

{
M
/
a3 (x, y, z) ∈ [−a/2 , a/2 ]

3
,

0 otherwise.

It is obvious by symmetry that I11 = I22 = I33:

I33 =
M

a3

∫ a/2

−a/2
dx

∫ a/2

−a/2
dy

∫ a/2

−a/2
dz (x2 + y2) =

2M

a

∫ a/2

−a/2
dxx2 =

Ma2

6
.

The cross terms evaluate to zero since the integrands are odd. The body is totally symmetric.

Example (Sphere). Consider a sphere with radius a, total mass M . The mass distribution is
uniform:

ρ(~r) =

{
3M/( 4πa3) x2 + y2 + z2 ≤ a,
0 otherwise.

Clearly, by symmetry I11 = I22 = I33:

I33 =
3M

4πa3

∫
~r 2≤a

d~r (x2 + y2) =
2

5
Ma2.

Likewise, the cross terms evaluate to zero due to symmetry. The body is totally symmetric.
Here is a fun thought experiment: Consider two free masses, a cube with side length ` and a

sphere of radius
√

5/12`. How can we tell them apart if we can only probe their rotational and
translational degrees of freedom?

11



1.6 Euler’s equations 1 RIGID BODY ROTATION

1.5.2 Parallel axis theorem

So far, we have only been calculating the inertia tensor about the centre of mass. If the body
is not free, it will not necessarily rotate about its centre of mass. But the inertia tensor about
the centre of mass has a nice property which allows us to compute the inertia tensor about an
arbitrary point more easily. We write the position vector as ~ri = ~r ∗i + ~R, where ~R is the centre
of mass position. Then, the inertia tensor is

Iab =
∑
i

mi

(
r2
i δab − ri,ari,b

)
=
∑
i

mi

([
~r ∗i + ~R

]2
δab − (r ∗i,a +Ra)(r ∗i,b +Rb)

)
=
∑
i

mi

([
(r ∗i )2 + 2r ∗i R+R2

]
δab − r ∗i,ar ∗i,b − r ∗i,aRb −Rar ∗i,b −RaRb

)
=
∑
i

mi

(
(r ∗i )2δab − r ∗i,ar ∗i,b

)
+ 2Rδab

∑
i

mir
∗
i︸ ︷︷ ︸

≡0

−Rb
∑
i

mir
∗
i,a︸ ︷︷ ︸

≡0

−Ra
∑
i

mir
∗
i,b︸ ︷︷ ︸

≡0

+
∑
i

mi

(
R2δab −RaRb

)
=I∗ab +M

(
R2δab −RaRb

)
.

(1.45)

So the inertia tensor decouples into the inertia tensor about the centre of mass I∗ and the inertia
tensor of the centre of mass. This is known as the parallel axis theorem.

1.6 Euler’s equations

We are interested the equation of motion for a rotating rigid body under external torque ~τ . As
we can completely specify the rotation of the body by the rotation matrix R(t), and since it is
possible to obtain R(t) from ~ω(t), we may look for an equation relating ~ω to ~τ . We start by
stating

d~L

dt
=

d

dt
(Laêa) = L̇aêa + La~ω × êa = ~τ . (1.46)

Now, we work in the principal axes and write the principal moments as I(1,2,3) to avoid confusion
with the summation convention. Then, we have La = I(a)ωa and so

~̇L = I(a)ω̇aêa + I(a)ωaωbêb × êa = I(a)ω̇aêa + I(a)ωaωbεbacêc. (1.47)

Substituting this yields

~̇L =
(
I(c)ω̇c + I(a)ωaωbεbac

)
êc = ~τ (1.48)

⇒ L̇c = I(c)ω̇c + εcbaωaωbI
(a) = τc. (1.49)

We may explicitly write the set of three equations:

L̇1 = I(1)ω̇1 + ω2ω3

(
I(3) − I(2)

)
= τ1, (1.50)

L̇2 = I(2)ω̇2 + ω3ω1

(
I(1) − I(3)

)
= τ2, (1.51)

L̇3 = I(3)ω̇3 + ω1ω2

(
I(2) − I(1)

)
= τ3. (1.52)

These are called the Euler equations.
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1.7 Euler angles

We want an explicit parametrisation of the rotation which takes us from the space to the body
frame. Any arbitrary rotation may be expressed as a composition of 3 rotations about 3 different
axes. We want rotation R such that êa = Rab ˜̂eb. Let’s split this into the three steps:

{˜̂ea}
R3(φ)−−−−→ {ê′a}

R1(θ)−−−→ {ê′′a}
R3(ψ)−−−−→ {êa}. (1.53)

First, we rotate by φ about ˜̂e3. So, ê′a = R3(φ)ab ˜̂eb where

R3(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

. (1.54)

Then, we rotate by θ around ê′1 so that ê′′a = R1(θ)abê
′
b, where

R1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

. (1.55)

Finally, we rotate by ψ about ê′′3 so that êa = R3(ψ)abê
′′
b where

R3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

. (1.56)

Putting everything together, we have R(φ, θ, ψ) = R3(ψ)R1(θ)R3(φ).
Let’s now express the angular velocity in terms of the Euler angles φ, θ, ψ. In time dt, the

angles change as
(φ, θ, ψ) −→ (φ+ dφ , θ + dθ , ψ + dψ),

which means the angular displacement is

~ω dt = dφ ˜̂e3 + dθ ê′1 + dψ ê′′3 ,

and hence the angular velocity is given by

~ω = φ̇ ˜̂e3 + θ̇ ê′1 + ψ̇ ê′′3 . (1.57)

Now, we need to write ˜̂e3, ê
′
1 and ê′′3 in terms of ê1,2,3. This is a straightforward computation:

ê′′3 = ê3,

ê′1 = ê′′1 = cosψ ê1 − sinψ ê2,

˜̂e3 = ê′3 = sin θ ê′′2 + cos θ ê′′3 = sin θ(sinψ ê1 + cosψ ê2) + cos θ ê3.

Hence, we have

~ω = φ̇(sin θ(sinψ ê1 + cosψ ê2) + cos θ ê3) + θ̇(cosψ ê1 − sinψ ê2) + ψ̇ ê3

= ê1

(
φ̇ sin θ sinψ + θ̇ cosψ

)
+ ê2

(
φ̇ sin θ cosψ − θ̇ sinψ

)
+ ê3

(
φ̇ cos θ + ψ̇

)
.

(1.58)
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2 LAGRANGIAN MECHANICS

2 Lagrangian Mechanics

(We use Einstein summation convention throughout this chapter.)

2.1 Generalised coordinates

Newton’s laws restrict us to deal with components of vectors in inertial frames. We are interested
in formulating classical mechanics in a way more general than that. A sensible first step would
be to propose a way of specifying the configuration of a system.

The (spatial) configuration of any given system with (finite) N degrees of freedom is specified
by a finite set of coordinates {q1, q2, . . . , qN}.1 Such a set of coordinates is called generalised
coordinates. For example, a set of n free particles requires 3n generalised coordinates to specify
the position of each. A free rigid body is described by 6 coordinates: 3 for centre of mass
position and 3 Euler angles.

We can go one step further and define a configuration space C as the space of all possible
configurations of the system. A choice of generalised coordinates {qa} then becomes an explicit
parametrisation of C. The configuration of a system at any given time corresponds to a point
in C. As the system evolves in time, it traces out a curve in C.

All we need now is a method to determine which particular curve is traversed.

2.2 Action principle

Since we are interested in finding a particular curve out of all possible curves in the configuration
space, we will need to use variational calculus. Let’s define a functional of the generalised
coordinates such that a stationary point of the functional corresponds to the path traversed in
the configuration space. This functional S[q], called the action, is defined as

S[q] :=

∫ tf

ti

L(q, q̇, t) dt , (2.1)

where L(q, q̇, t)2 is the Lagrangian, defined as the difference between the kinetic and potential
energy of the system:

L(q, q̇, t) := T (q̇)− V (q, t). (2.2)

Out of all curves in C with fixed endpoints

q(ti) = qi and q(tf ) = qf , (2.3)

the system follows the one which makes the action S stationary. This is called the action
principle.

Note that in equation (2.1) we assumed that the curve is parametrised by time so that
qa = qa(t). Equivalently, we could have used an arbitrary parametrisation. If the Lagrangian
has explicit time dependence, using another parametrisation would imply that time itself should
be taken as a generalised coordinate. In relativity, since space and time are treated on an equal
footing, the curve may not always be parametrised by time.

1Strictly speaking, the configuration of a system at a given time is represented by a point on an N dimensional
manifold. The coordinate functions qi provide a local chart to the manifold. To specify the complete state of
the system, we need to specify velocities associated to each coordinate. This corresponds to the tangent bundle
of the manifold, which itself is a 2N dimensional manifold. The same information is captured by the cotangent
bundle. It is called the phase space.

2The set of all generalised coordinates {q1, . . . , qN} is denoted by q, and similarly q̇ denotes the set
{q̇1, . . . , q̇N}.
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2.3 Euler-Lagrange equations

To find the path which stationarises the action, we consider the variation

δS = S[q + δq]− S[q], (2.4)

where δq is a small perturbation to the trajectory. The boundary condition (2.3) implies

δq(ti) = δq(tf ) ≡ 0. (2.5)

The variation in the Lagrangian is

δL = L(q + δq, q̇ + δq̇, t)− L(q, q̇, t) =
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a. (2.6)

Note that we always work up to linear order in δq. The variation in the action is then given by

δS =

∫ tf

ti

δL dt =

∫ tf

ti

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a
)
dt . (2.7)

Integrating second term by parts:∫ tf

ti

∂L

∂q̇a
δq̇ dt =

∂L

∂q̇a
δqa
∣∣∣∣tf
ti︸ ︷︷ ︸

=0

−
∫ tf

ti

d

dt

(
∂L

∂q̇a

)
δqa dt = −

∫ tf

ti

d

dt

(
∂L

∂q̇a

)
δqa dt .

Hence, we have

δS =

∫ tf

ti

[
∂L

∂qa
− d

dt

(
∂L

∂q̇a

)]
δqa dt = 0. (2.8)

Since this must hold for all δq, we must have

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0 ∀ a. (2.9)

This is known as the Euler-Lagrange equation.
As a side note, the functional derivative δS/δq is defined such that

δS =

∫
δS
δqa

δqa dt . (2.10)

So, for a Lagrangian which depends on q, q̇ and t, the functional derivative is

δS
δqa

=
∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
. (2.11)

We may now show that the action principle is equivalent to Newton’s laws. Choosing Carte-
sian coordinates, we have

T =
1

2
m(ẋ2 + ẏ2 + ż2)

for a single particle. Then,

∂L

∂xa
− d

dt

(
∂L

∂ẋa

)
= −mẍa −

∂V

∂xa
= 0 ⇒ m~̈x = −~∇V. (2.12)
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θ

φ

θ

x

Example (Double pendulum). Consider two equal point masses m attached with rigid rods of
length ` as shown from the figure. The system admits a two dimensional configuration space
spanned by (θ, φ) ∈ [0, 2π)2 (as a manifold, this is a torus). The kinetic energy and potential
energies are

T = m`2θ̇2 +
1

2
m`2φ̇2 +m`2θ̇φ̇ cos(θ − φ),

V = −mg`(2 cos θ + cosφ).

Hence, the Lagrangian:

L = T − V = m`2θ̇2 +
1

2
m`2φ̇2 +m`2θ̇φ̇ cos(θ − φ) +mg`(2 cos θ + cosφ).

The Euler-Lagrange equations for θ and φ are

2`θ̈ + `φ̈ cos(θ − φ) + `φ̇2 sin(θ − φ) + 2g sin θ = 0,

`φ̈+ `θ̈ cos(θ − φ)− `θ̇2 sin(θ − φ) + g sinφ = 0.

These form a system of coupled second-order nonlinear differential equations.

Example (Spring pendulum). Consider point mass m and let θ denote the angle from the
vertical and x the extension of the spring, ` the natural length of the spring, and k the spring
constant. Then, we can write the kinetic and potential energy:

T =
1

2
m(`+ x)2θ̇2 +

1

2
mẋ2

V = −mg(`+ x) cos θ +
1

2
kx2.

The Lagrangian is

L = T − V =
1

2
m(`+ x)2θ̇2 +

1

2
mẋ2 +mg(`+ x) cos θ − 1

2
kx2.

Then, the Euler-Lagrange equation for θ is:

∂L

∂θ
=

d

dt

(
∂L

∂θ̇

)
⇒ −g sin θ = 2ẋθ̇ + (`+ x)θ̈.

Similarly, for x we have

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
⇒ mẍ = −kx+m(`+ x)θ̇2 +mg cos θ.

Note. Although Euler-Lagrange equations are useful, they are not fundamental. It is often
better, especially in field theories, to vary the action directly instead of writing down Euler-
Lagrange equations. Also, a lot of important results are more easily shown starting from the
action. The next subsection is a good example of this.
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2.4 Coordinate transformations

The beauty of the Lagrangian formalism is coordinate invariance. The Euler-Lagrange equa-
tions are coordinate invariant - meaning they look the same in any coordinate system for the
configuration space. This should be obvious as the action principle deals with paths in the
configuration space. How we choose to parametrise the configuration space should be irrelevant.
However, we will gain greater insight if we look at how functional derivatives transform.

Consider a coordinate transformation which may depend on time with non-zero Jacobian
determinant:

qa = qa(q1, . . . , qN , t) and qa = qa(q1, . . . , qN , t). (2.13)

The Lagrangian in the transformed coordinates is

L(q, q̇, t) = L(q(q, t), q̇(q, q̇, t), t), (2.14)

where

q̇a =
dqa

dt
=
∂qa

∂qb
q̇
b

+
∂qa

∂t
. (2.15)

First, look at ∂L
/
∂qa :

∂L

∂qa
=

∂

∂qa
[
L(q(q, t), q̇(q, q̇, t, t))

]
=
∂L

∂qb
∂qb

∂qa
+
∂L

∂q̇b
∂q̇b

∂qa

=
∂L

∂qb
∂qb

∂qa
+
∂L

∂q̇b
∂

∂qa

(
∂qb

∂qc
q̇
c

+
∂qb

∂t

)
=
∂L

∂qb
∂qb

∂qa
+
∂L

∂q̇b

(
∂2qb

∂qa∂qc
q̇
c

+
∂2qb

∂qa∂t

)
.

(2.16)

Now, look at ∂L
/
∂q̇

a
:

∂L

∂q̇
a =

∂L

∂q̇b
∂q̇b

∂q̇
a =

∂L

∂q̇b
∂

∂q̇
a

(
∂qb

∂qc
q̇
c

+
∂qa

∂t

)
=
∂L

∂q̇b
∂qb

∂qc
δca =

∂L

∂q̇b
∂qb

∂qa
. (2.17)

Hence, we have

d

dt

(
∂L

∂q̇
a

)
=

d

dt

(
∂L

∂q̇b
∂qb

∂qa

)
=

d

dt

(
∂L

∂q̇b

)
∂qb

∂qa
+
∂L

∂q̇b
d

dt

(
∂qb

∂qa

)
=

d

dt

(
∂L

∂q̇b

)
∂qb

∂qa
+
∂L

∂q̇b

(
∂2qb

∂qa∂qc
q̇
c

+
∂2qb

∂qa∂t

)
.

(2.18)

Putting (2.16) and (2.18) together, we obtain the transformation rule for the functional deriva-
tive:

δS
δqa

=
∂L

∂qa
− d

dt

(
∂L

∂q̇
a

)
=

[
∂L

∂qb
− d

dt

(
∂L

∂q̇b

)]
∂qb

∂qa
=
∂qb

∂qa
δS
δqb

. (2.19)

It follows from this that if the Euler-Lagrange equations hold in one set of coordinates q, it holds
in all sets of coordinate related to q by some transformation of the form (2.13). But that’s not
it! Interestingly enough, the functional derivative transforms as a covariant tensor! Although
none of the two terms in the functional derivative transforms as a tensor, their combination
does.
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Note. We may prove the same result directly from the action by noting

S =

∫
dtL(q, q̇, t) =

∫
dtL(q, q̇, t) ⇒ δS =

∫
dt

δS
δqa

δqa =

∫
dt

δS
δqa

δqa. (2.20)

The variations are related by:

δqa = qa(q + δq, t)− qa(q, t) =
∂qa

∂qb
δqb. (2.21)

Combining the two:

δS =

∫
dt

δS
δqa

δqa =

∫
dt
δS
δqb

∂qb

∂qa
δqa ⇒ δS

δqa
=
∂qb

∂qa
δS
δqb

. (2.22)

2.5 Dissipation in Lagrangian formalism

Dissipative systems are more tricky to deal with due to the fact that dissipative forces are not
conservative and so not derived from potentials. Suppose we can express dissipation in form of
some dissipative forces. Then, we can make use of the transformation property of the functional
derivative to incorporate dissipative forces into the equation of motion.

Consider a system with 3 degrees of freedom which may be expressed in Cartesian coordi-
nates. Let ~γ be the dissipative force. The Newtonian equation of motion reads:

m~̈x = −~∇V + ~γ, (2.23)

where we naturally split up the forces into conservative and non-conservative components. Re-
ferring to equation (2.12), in component form:

mẍa = − ∂V
∂xa

+ γa ⇔ −γa = −mẍa −
∂V

∂xa
=

δS
δxa

, (2.24)

where γa denotes the covariant component of ~γ. Now, we have a tensor equation since both
terms transform covariantly. Then, the equation of motion in any coordinate system q is:

− ∂xb

∂qa
γb =

∂xb

∂qa
δS
δxb

=
δS
δqa

. (2.25)

This may be generalised for systems with more (or fewer) degrees of freedom. For constrained
systems, describing the system with Cartesian coordinates may require the use of Lagrange
multipliers.

I’m sure there is a better approach to deal with dissipation, this is the one I could come up
with.

2.6 Holonomic constraints

Holonomic constraints are relationships between the coordinates of the form:

fα(x1, . . . , xM , t) = 0, α = 1, . . . ,M −N. (2.26)

These can be solved for N generalised coordinates {q1, . . . , qN}. The system is said to have N
degrees of freedom and so the configuration space is N -dimensional.

Holonomic constraints arise naturally if we try to describe the configuration space with more
coordinates than degrees of freedom. An example would be to use Cartesian coordinates (x, y)
to describe a simple pendulum swinging along a plane.
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2.7 Lagrangian transformations 2 LAGRANGIAN MECHANICS

We can deal with holonomic constraints without explicitly solving for the generalised coor-
dinates. We consider instead the Lagrangian

L′(x, ẋ, λ, t) = L(x, ẋ, t) +
∑
α

λαfα(x, t), (2.27)

where we treat λ as additional coordinates. These are known as Lagrange multipliers. The
Euler-Lagrange equation for λα reads:

∂L′

∂λα
− d

dt

(
∂L′

∂λ̇α

)
= fα(x, t) = 0, (2.28)

which is the constraint itself. The Euler-Lagrange equation for the coordinates are

∂L′

∂xa
− d

dt

(
∂L′

∂ẋa

)
=

∂L

∂xa
+
∑
α

λα
∂fα
∂xa
− d

dt

(
∂L

∂ẋa

)
= 0 ⇔ δS

δxa
= −

∑
α

λα
∂fα
∂xa

. (2.29)

Constraint forces may be found by choosing Cartesian coordinates, then

mẍa = − ∂V
∂xa

+
∑
α

λα
∂fα
∂xa

. (2.30)

2.7 Lagrangian transformations

Some transformations of the Lagrangian leave the dynamics invariant, but may make the equa-
tions easier to obtain. Let’s have a look at a few of them.

1. For any λ ∈ R and f(t), the Lagrangian

L′ = λL+ f(t)

describes the same dynamics as the Lagrangian L. To see this, simply consider the func-
tional derivative:

δS ′

δqa
=
∂L′

∂qa
− d

dt

(
∂L′

∂q̇a

)
= λ

∂L

∂qa
− λ d

dt

(
∂L

∂q̇a

)
= λ

δS
δqa

.

2. Adding a total derivative to the Lagrangian shifts the action by a constant which leaves the
dynamics unchanged. Consider the action associated with the Lagrangian L′ = L+ df/dt :

S ′ =

∫ tf

ti

L+
df

dt
dt =

∫ tf

ti

Ldt+ f

∣∣∣∣tf
ti

= S + constant.

Note that f can be a function of time and any of the generalised coordinates and their
derivatives, so that f = f(q, q̇, q̈, . . . , t).

3. If the Lagrangian is totally conserved, meaning

dL

dt
=

∂L

∂qa
q̇a +

∂L

∂q̇a
q̈a +

∂L

∂t
= 0,

then any (nice enough) function of the Lagrangian F (L) describes the same dynamics. To
see why, consider varying the action S ′ =

∫
dt F (L):

δS ′ =

∫
dt F ′(L)

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a
)

=

∫
dt δqa

(
F ′(L)

∂L

∂qa
− d

dt

[
F ′(L)

∂L

∂q̇a

])
=

∫
dt F ′(L)δqa

(
∂L

∂qa
− d

dt

[
∂L

∂q̇a

])
−
∫
dt δqaF ′′(L)

dL

dt

∂L

∂q̇a
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2.8 Conserved quantities 2 LAGRANGIAN MECHANICS

The solution of the Euler-Lagrange equation for Lagrangian L makes the first integral
vanish, meaning the transformed Lagrangian F (L) also obeys its Euler-Lagrange equation
provided dL/dt = 0. This trick is used in relativity to consider L2 instead of L.

2.8 Conserved quantities

A function F (q, q̇, t) is called a constant of motion (or a conserved quantity) if its total time
derivative vanishes,

dF

dt
=
∂F

∂qa
q̇a +

∂F

∂q̇a
q̈a +

∂F

∂t
= 0, (2.31)

along the path in configuration space taken by the system. Hence, F remains constant as the
system evolves.

Suppose ∂L/∂qa = 0 for some qa. Then, by Euler-Lagrange:

d

dt

(
∂L

∂q̇a

)
=

∂L

∂qa
= 0 ⇒ ∂L

∂q̇a
is conserved. (2.32)

The quantity ∂L/∂q̇a defines the generalised momentum associated with coordinate qa:

pa :=
∂L

∂q̇a
⇒ ṗa =

∂L

∂qa
. (2.33)

In Cartesian coordinates, pa corresponds to linear momentum:

pa =
∂L

∂ẋa
= mẋa.

Now suppose the Lagrangian has no explicit time dependence. Then, the quantity

H =
∂L

∂q̇a
q̇a − L = paq̇

a − L (2.34)

is conserved, since

dH

dt
=

d

dt
(paq̇

a − L) = ṗaq̇
a + paq̈

a − ∂L

∂q̇a
q̈a − ∂L

∂qa
q̇a − ∂L

∂t
= −∂L

∂t
= 0. (2.35)

H is the Hamiltonian, usually identified with the total energy of the system.

2.9 Noether’s theorem

Conserved quantities are related to continuous symmetries of the Lagrangian. First, let’s define
what we mean by a continuous symmetry.

Consider a transformation of the coordinates q which depends continuously on some param-
eter s such that

qa(t) 7−→ Qa(s, t) = qa(t) + s
∂Qa

∂s

∣∣∣∣
s=0

+O
(
s2
)
. (2.36)

The Lagrangian then transforms as

L(t) 7−→ L′(t, s) = L(t) + s
∂L

∂s

∣∣∣∣
s=0

+O
(
s2
)

(2.37)

This transformation is said to be a continuous symmetry of the Lagrangian L if

∂L

∂s

∣∣∣∣
s=0

= 0 ⇔ L′ = L+O
(
s2
)
. (2.38)

20



2.9 Noether’s theorem 2 LAGRANGIAN MECHANICS

In other words, the Lagrangian remains constant to linear order as we dial up or down the
parameter s. Noether’s theorem states that for each such symmetry, there exists a conserved
quantity.

The proof is as follows: Let τ be some arbitrary time interval. The variation of the action
over τ due to a symmetry transformation (to first order in s) is

δSτ = S ′τ − Sτ =

∫
τ

dt (L′ − L) = 0. (2.39)

The same variation can also be expressed by explicitly varying L with respect to the coordinates,
noting that δqa = s ∂Qa/∂s

∣∣
s=0

:

0 = δSτ =

∫
τ

dt δqa
(
∂L

∂qa
− d

dt

[
∂L

∂q̇a

])
+

∫
τ

dt
d

dt

(
∂L

∂q̇a
δqa
)
. (2.40)

The first integral vanishes because we’re varying on the solutions to equations of motion. Since
τ was arbitrary, the integrand of the second integral must vanish, which implies

d

dt

(
∂L

∂q̇a
∂Qa

∂s

∣∣∣∣
s=0

)
= 0. (2.41)

This is our conserved quantity.

2.9.1 Space translation symmetry

Suppose the Lagrangian has translation symmetry, so that

L(~r + s~n, ~̇r, t) = L(~r, ~̇r, t) (2.42)

for some constant vector ~n. Then, the associated conserved quantity is

∂L

∂ẋa
na = pan

a = ~p · ~n. (2.43)

Hence, linear momentum in the ~n direction is conserved. This may be generalised to many
particle systems.

Suppose now that we work in cylindrical coordinates (r, φ, z) and the Lagrangian has rota-
tional symmetry about the z-axis, so that

L(r, φ+ s, z, ṙ, φ̇, ż, t) = L(r, φ, z, ṙ, φ̇, ż, t). (2.44)

Then, the conserved quantity is
∂L

∂φ
= pφ. (2.45)

For a kinetic energy of the form

T =
1

2
m
(
ṙ2 + ż2

)
+

1

2
Iφ̇2 ⇒ pφ = Iφ̇ = Lz,

so the angular momentum about z is conserved.

2.9.2 Time translation and the Hamiltonian

Finally, consider time translation invariance, meaning the Lagrangian remains constant as t 7→
t+ s. This implies ∂L/∂t = 0. We know already that this implies that the conserved quantity

21



2.10 Kinetic matrix 2 LAGRANGIAN MECHANICS

is the Hamiltonian. The explicit derivation is slightly different from space translation since
coordinates are parametrised by time. First, note that

δL = L′ − L = s
dL

dt
+O

(
s2
)
. (2.46)

This yields

δSτ = s

∫
τ

dt
dL

dt
. (2.47)

Now, note that the coordinates transform as

qa(t) 7−→ qa(t+ s) = qa(t) + sq̇a(t), q̇a(t) 7−→ q̇a(t+ s) = q̇a(t) + sq̈a(t). (2.48)

Then, explicitly varying the action yields

δSτ =

∫
τ

dt

(
sq̇a

∂L

∂qa
+ sq̈a

∂L

∂q̇a

)
=

∫
τ

dt sq̇a
(
∂L

∂qa
− d

dt

(
∂L

∂q̇a

))
+ s

∫
τ

dt

(
∂L

∂q̇a
q̇a
)

= s

∫
τ

dt

(
∂L

∂q̇a
q̇a
)
.

(2.49)

Equating the two expressions for δSτ yields:

d

dt

(
∂L

∂q̇a
q̇a − L

)
= 0 ⇔ dH

dt
= 0. (2.50)

2.10 Kinetic matrix

Consider rewriting the set of Euler-Lagrange equation as:

δS
δqa

= 0 ⇔ Zabq̈b +Ma = 0. (2.51)

This can be done explicitly:

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
=

∂L

∂qa
− ∂2L

∂q̇b∂q̇a
q̈b − ∂2L

∂qb∂q̇a
q̇b − ∂2L

∂t∂q̇a
(2.52)

⇒ Zab =
∂2L

∂q̇a∂q̇b
(2.53)

⇒ Ma =
∂2L

∂qb∂q̇a
q̇b +

∂2L

∂t∂q̇a
− ∂L

∂qa
. (2.54)

Provided det(Z) 6= 0, we can invert the equation to yield a set of coupled second order equations:

q̈a = −(Z−1)abMb. (2.55)

Although the kinetic matrix may seem useless now, it will become useful when we talk about
stability.

2.11 Stability and oscillations

We can deduce a lot about the behaviour of a system around its equilibrium points assuming
the Lagrangian is of the form:

L(q, q̇) = T (q, q̇)− V (q) =
1

2
αab(q)q̇

aq̇b − V (q). (2.56)
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Natural systems

A system is said to be natural if the kinetic energy can be written as a quadratic, homogeneous
function of q̇:

T =
1

2
αab(q)q̇

aq̇b (2.57)

for some αab(q) which can be a function of the coordinates q. For a single particle of mass m,
the kinetic energy is given by

T =
1

2
mgabq̇

aq̇b, (2.58)

where gab(q) is the metric tensor. We therefore see that αab contains information about the
metric associated with the coordinates q, as well as the inertias of each constituent of the
system. Note that α can be chosen to be symmetric.

Assuming a Lagrangian of the form (2.56), we see that the kinetic matrix is given by

Z(q)ab =
∂2L

∂q̇a∂q̇b
=

1

2
αcd(q)

∂2

∂q̇a∂q̇b
(q̇cq̇d) = αab(q). (2.59)

From now on we will work with the kinetic matrix instead and simply write

T (q, q̇) =
1

2
Zabq̇aq̇b. (2.60)

Equilibrium points

An equilibrium point qeq is defined as a point in the configuration space which satisfies the
Euler-Lagrange equations for all time t. In other words, the curve q(t) = qeq is a solution of
the Euler-Lagrange equations. This implies q̇ ≡ 0. We can then find an equilibrium point by
solving:

∂L

∂qa

∣∣∣∣
qeq,q̇≡0

− d

dt

(
∂L

∂q̇a

)∣∣∣∣
qeq,q̇≡0

= 0 ∀ a. (2.61)

For a Lagrangian of the form (2.56), we have

∂L

∂qa
=

1

2

∂Zbc
∂qa

q̇bq̇c
∣∣∣∣
q̇≡0

− ∂V

∂qa

∣∣∣∣
qeq

= − ∂V

∂qa

∣∣∣∣
qeq

,

and
∂L

∂q̇a
=

1

2
Zabq̇b ⇒ d

dt

(
∂L

∂q̇a

)
=

1

2

dZab
dt

q̇b
∣∣∣∣
q̇≡0

+
1

2
Zabq̈b

∣∣∣∣
q̇≡0

= 0,

where q̇ ≡ 0⇒ q̈ ≡ 0. Hence, an equilibrium point may be found by simply solving

∂V

∂qa

∣∣∣∣
qeq

= 0 ∀ a. (2.62)

Small oscillations

Now, let’s try to describe the system about an equilibrium point qeq. We start by considering a
small perturbation in the form

qa(t) = qaeq + ηa(t) (2.63)

for all a. Since we want to obtain equation of motion linear in η, we have to expand the
Lagrangian about qeq up to second order. This yields

L(q, q̇) =
1

2

(
Zab(qeq) +

∂Zab
∂qc

∣∣∣∣
qeq

ηc + . . .

)
η̇aη̇b − 1

2

∂2V

∂qa∂qb

∣∣∣∣
qeq

ηaηb +O
(
η3
)
, (2.64)
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where we omitted the constant term V (qeq). Noting that η̇ = O(η), only the first constant term
in the expansion for Z survives. Then, we have

∂L

∂qa
= −1

2

∂2V

∂qb∂qc

∣∣∣∣
qeq

∂

∂ηa
(
ηbηc

)
= − ∂2V

∂qa∂qb

∣∣∣∣
qeq

ηb = −Vabηb,

where we defined Vab = ∂2V
/
∂qa∂qb evaluated at qeq. Similarly, we have

∂L

∂q̇a
=

1

2
Zbc(qeq)

∂

∂η̇a
(η̇bη̇c) = Zabη̇b (2.65)

⇒ d

dt

(
∂L

∂q̇a

)
= Zabη̈b. (2.66)

Hence, the Euler-Lagrange equations read

Zabη̈b + Vabη
b = 0 ⇒ η̈a = −(Z−1V )abη

b = F ab η
b, (2.67)

where we defined the matrix F = −Z−1V . In matrix form:

~̈η = F~η. (2.68)

The solution is given in terms of the eigenvectors ~µi of F , assuming they exist with real eigen-
values λ2

i ∈ R:
F~µi = λ2

i ~µ. (2.69)

The general solution is then given by:

~η(t) =
∑
i

~µi
(
Aie

λit +Bie
−λit

)
, (2.70)

where Ai and Bi are integration constants. The stability is determined by the eigenvalues λ2
i as

follows:

1. If λ2
i < 0, then λi = ±iωi for some real ωi. This corresponds to simple harmonic motion

with frequency ωi and the system is stable in the ~η = ~µi direction.

2. If λ2
i > 0, the perturbation ~η grows exponentially in the ~µi direction since λi ∈ R. The

system is unstable.

The eigenvectors ~µi are called normal modes. The system is said to be stable around the
equilibrium point if all the normal modes of oscillation are stable, meaning λ2

i < 0 for all i.

Example (Double pendulum). Recall the Lagrangian for the double pendulum discussed before:

L ∝ `θ̇2 +
1

2
`φ̇2 + `θ̇φ̇ cos(θ − φ) + g(2 cos θ + cosφ).

An equilibrium point is (θ, φ) = (0, 0). The kinetic matrix is

Z(θ, φ) =

(
2` ` cos(θ − φ)

` cos(θ − φ) `

)
⇒ Z(0, 0) = `

(
2 1
1 1

)
.

Similarly, V is

V = g

(
2 0
0 1

)
.

Then, we have

F = −Z−1V = −g
`

(
2 −1
−2 2

)
.
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The eigenvalues yield ω± = 2±
√

2, with eigenvectors

~µ+ =

(
1

−
√

2

)
, ~µ− =

(
1√
2

)
.

The ω+ mode corresponds to the pendulums swinging in opposite directions, and the ω− mode
is pendulums swinging in phase.

2.12 Continuous systems

What happens when the system we want to describe doesn’t have a discrete set of generalised co-
ordinates, but a continuum? This is the case for any field or composite system in the continuum
limit. Such systems have infinite degrees of freedom. Let’s first look at a simple example.

One-dimensional string

Consider a string of length `0 with fixed endpoints at x = (0, `0). The state of the system is
specified by the displacement from equilibrium φ(x, t) for each x ∈ [0, `0]. Our set of generalised
coordinates is now a continuous function of position! Let’s write the Lagrangian. We use the
notation

∂xφ =
∂φ

∂x
, ∂tφ =

∂φ

∂t
.

To find the kinetic energy, we have to be careful about how we define the mass density µ. The
more thorough approach is to define it so that it is homogeneous throughout the string:

µ =
M

`
⇒ dm = µd` ,

where M is the total mass and ` is the total length of the string. Note that by this definition,
the mass density decreases as the string is stretched. The total length of the string is

` =

∫
d` =

∫ √
dx2 + dφ2 =

∫ `0

0

√
1 + (∂xφ)

2
dx . (2.71)

Then, the kinetic energy is given by

T =
1

2

∫
(∂tφ)2 dm =

1

2

∫
µ(∂tφ)

2
d` . (2.72)

This is a horrible expression which depends both on ∂tφ and ∂xφ (through d`). We can simply
this by assuming the displacement is small and smooth so that ∂xφ� 1. Then,

d` =

√
1 + (∂xφ)

2
dx =

(
1 +

1

2
(∂xφ)2 + . . .

)
dx = dx+O

(
(∂xφ)2

)
≈ dx , (2.73)

µ =
M

`
≈ M

`0
= µ0 = constant. (2.74)

With this approximation, the kinetic energy is

T =
1

2

∫ `0

0

µ0(∂tφ)2 dx . (2.75)

The potential energy is due to the stretching of the string and is given in terms of the tension
k as

V = k(`− `0) (2.76)
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where we assume the tension remains constant. The length difference (`− `0) is given by

`− `0 =

∫ `0

0

(
1 +

1

2
(∂xφ)2 + . . .

)
dx− `0 =

1

2

∫ `0

0

(
(∂xφ)

2
+O

(
(∂xφ)4

))
dx , (2.77)

where this time we have to keep terms of order (∂xφ)2 otherwise we get no potential. The
potential is therefore

V =
1

2

∫ `0

0

k(∂xφ)2 dx . (2.78)

The Lagrangian is

L = T − V =

∫ `0

0

1

2

(
µ(∂tφ)

2 − k(∂xφ)
2
)
dx , (2.79)

which is a functional of the field φ. The integrand is called the Lagrangian density, denoted L .
In terms of L , we have

L =

∫ `0

0

L dx , where L =
1

2

(
µ(∂tφ)

2 − k(∂xφ)
2
)
. (2.80)

The action for a general continuous system in one-dimension with Lagrangian density L is

S[φ] =

∫
dt

∫
dxL (φ, ∂tφ, ∂xφ), (2.81)

⇒ δS =

∫
dt

∫
dx

[
∂L

∂φ
δφ+

∂L

∂(∂tφ)
∂t(δφ) +

∂L

∂(∂xφ)
∂x(δφ)

]
=

∫
dt

∫
dx

[
∂L

∂φ
− ∂

∂t

(
∂L

∂(∂tφ)

)
− ∂

∂x

(
∂L

∂(∂xφ)

)]
δφ = 0

(2.82)

⇒ ∂L

∂φ
− ∂

∂t

(
∂L

∂(∂tφ)

)
− ∂

∂x

(
∂L

∂(∂xφ)

)
= 0. (2.83)

This is the Euler-Lagrange equation for a continuous field φ(x, t), given in terms of the La-
grangian density L (φ, ∂tφ, ∂xφ). For the string, this yields

µ
∂2φ

∂t2
− k∂

2φ

∂x2
= 0, (2.84)

which is the wave equation.

Klein-Gordon equation

We can generalise this formalism to fields φ of time and any number of space dimensions. Let
xµ = {t, x, y, z} with µ = 0, 1, 2, 3. Then, φ = φ(xµ) and ∂µφ = ∂φ/∂xµ . The Lagrangian
density is in general:

L = L (φ, ∂µφ, x
µ).

The Euler-Lagrange equations take the form:

∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (2.85)
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Consider a Lagrangian density of the form

L =
1

2
(∂tφ)2 − 1

2
|~∇φ|

2
− V (φ), (2.86)

∂L

∂φ
= −∂V

∂φ
, (2.87)

∂t

(
∂L

∂(∂tφ)

)
=
∂2φ

∂t2
, (2.88)

~∇ ·

(
∂L

∂(~∇φ)

)
= −∇2φ. (2.89)

This yields the Klein-Gordon equation:

− ∂2φ

∂t2
+∇2φ− ∂V

∂φ
= −�φ− ∂V

∂φ
= 0, (2.90)

where we defined the d’Alembertian operator � = ∂2
t −∇2.
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3 Hamiltonian Mechanics

3.1 Legendre transform

Suppose we have a function of two variables f = f(x, y). Now, introduce variable u, related to
x, y by

u =
∂f

∂x
. (3.1)

We will need to invert u for x to write some x = x(u, v). This puts a constraints on our
function f(x, y), in the sense that ∂f/∂x needs to be a monotonic function of u for all y. This
is equivalent to the statement that f(x, y) is a convex (or concave) function of x for all y.

We want a transformation of the form:

f(x, y) 7−→ g(u, y) where x =
∂g

∂u
, (3.2)

so that u and x are treated symmetrically. In other words, u is related to x through f in the
same way as x is related to u through g.

The simple substitution g(u, y) = f(x(u, y), y) won’t satisfy the symmetry property. So,
consider:

g(u, y) = ux(u, y)− f(x(u, y), y) (3.3)

⇒ ∂g

∂u
= x(u, y) + u

∂x(u, y)

∂u
− ∂f(x, y)

∂x︸ ︷︷ ︸
=u

∂x(u, y)

∂u
= x(u, y). (3.4)

This satisfies our condition. Does the inverse transform exist? Consider the transform g(u, y) 7−→
h(x, y) where x = ∂g/∂u :

h(x, y) = xu− g(u, y) = xu− (xu− f(x, y)) = f(x, y). (3.5)

Hence, not only does the inverse transform exist, it is obtained by repeated application of the
original transformation in the sense that

f(x, y)
x→u−−−→ g(u, y)

u→x−−−→ f(x, y). (3.6)

This transformation is called the Legendre transform. We will apply it to the Lagrangian to
obtain the Hamiltonian.

As a last note, we note that the Legendre transform generalises to multiple variables as
follows: suppose we have a function f(x1, . . . , xn, y) and a set u1, . . . , un with

ua = ua(x1, . . . , xn, y) =
∂f

∂xa
invertible so that xa = xa(u1, . . . , un, y) = xa(u, y).

The Legendre transform is given by

g(u1, . . . , un, y) =

n∑
a=1

xa(u, y)ua − f(x1(u, y), . . . , xn(u, y), y). (3.7)

3.2 Hamilton’s equations

The point of the Hamiltonian formalism is to reformulate the Lagrangian formalism in terms of
the generalised momenta

pa =
∂L

∂q̇a
,
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instead of the q̇a. So, we define the Hamiltonian H(q, p, t) to be the Legendre transform of the
Lagrangian L(q, q̇, t) with respect to q̇:

H(q, p, t) = paq̇
a − L(q, q̇, t), (3.8)

where q̇ is eliminated by inverting the generalised momenta pa = ∂L/∂q̇a to get q̇a = q̇a(q, p, t).
There are many ways to recover the equations of motion. Again, I find it best to refer back

to the action whenever possible. The action, written in terms of the Hamiltonian is now a
functional of (q, p) with no explicit dependence on q̇, ṗ:

S[q, p] =

∫
dt (paq̇

a(q, p)−H(q, p, t)). (3.9)

Now, we vary the action by δq and δp:

δS =

∫
dt

(
q̇aδpa + paδq̇

a − ∂H

∂qa
δqa − ∂H

∂pa
δpa

)
=

∫
dt

(
δpa

[
q̇a − ∂H

∂pa

]
− δqa

[
ṗa +

∂H

∂qa

])
= 0.

(3.10)

where we assumed the boundary condition δq(ti) = δq(tf ) = 0. Requiring δS = 0 for all δq and
δp yields Hamilton’s equations:

q̇a =
∂H

∂pa
, (3.11)

ṗa = −∂H
∂qa

. (3.12)

Let’s look at a few simple conservation laws. If the Hamiltonian has no explicit time depen-
dence so that ∂H/∂t = 0, then H is a constant of motion:

dH

dt
=
∂H

∂qa
q̇a +

∂H

∂pa
ṗa +

∂H

∂t
=
∂H

∂qa
∂H

∂pa
− ∂H

∂pa

∂H

∂qa
+
∂H

∂t
=
∂H

∂t
= 0. (3.13)

Note that ∂H/∂t = − ∂L/∂t , so this result is consistent with the results in the previous section.
If the Lagrangian doesn’t explicitly depend on some coordinate qa, then so doesn’t Hamil-

tonian by construction. The associated momentum pa is conserved:

ṗa = −∂H
∂qa

= 0. (3.14)

We already knew these conservation laws from the Lagrangian formalism. Later, we will see
a greater class of transformations called canonical transformations, and associated symmetries
and conserved quantities.

Example (Simple pendulum). Recall the Lagrangian for a simple pendulum:

L =
1

2
m`2θ̇2 +mg cos θ.

The conjugate momentum is

pθ =
∂L

∂θ̇
= m`θ̇2.

The Hamiltonian is

H = pθ θ̇ − L =
p2
θ

2m`2
−mg cos θ.

Equations of motion are

θ̇ =
∂H

∂pθ
=

pθ
m`2

, ṗθ = −∂H
∂θ

= −mg sin θ.
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3.3 Phase space

In the Lagrangian formalism, the time evolution is described by a set of N Euler-Lagrange
equations, each of which is second order in time. In the Hamiltonian formalism, this set of N
second order equations are replaced by a set of 2N first order equations: N for momenta and
N for coordinates.

Recall that in the Lagrangian formalism, the system is described by a point in an N dimen-
sional configuration space C. Time evolution traces out a curve in C. There is a subtle point
here: the path in C depends on a set of 2N initial conditions (q0, q̇0). A point in C only gives
half of the initial conditions - it doesn’t specify q̇0. In this sense, a point in configuration space
does not give a complete description - the state - of the system.

In the Hamiltonian formalism, the N dimensional configuration space is replaced by a 2N
dimensional phase space. A pair (q, p) specifies a point in phase space. Since Hamilton’s
equations are first order in time, a point in phase space not only describes the system, but
completely determines the time evolution. It gives a complete set of 2N initial conditions and
completely specifies the state of the system.

As a corollary, since any point in phase space completely determines the time evolution of
the system, trajectories in phase space can never intersect due to uniqueness. The evolution is
said to be described by a flow in the phase space.

3.4 Poisson brackets

Suppose we have some function F (q, p, t) defined over phase space. The total time derivative is

dF

dt
=
∂F

∂t
+
∂F

∂qa
q̇a +

∂F

∂pa
ṗa =

∂F

∂t
+
∂F

∂qa
∂H

∂pa
− ∂F

∂pa

∂H

∂qa
=
∂F

∂t
+ {F,H}, (3.15)

where we defined the Poisson bracket of two functions f(q, p, t) and g(q, p, t) to be

{f, g} :=
∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
. (3.16)

Let’s look at some properties:

1. Antisymmetry: {f, g} = −{g, f}.

2. Linearity: {αf + βg, h} = α{f, h}+ β{g, h}.

3. Leibniz: {fg, h} = f{g, h}+ g{f, h}.

4. Jacobi: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

A corollary of equation (3.15) is that for any F (q, p), we have

{F,H} = 0 ⇒ dF

dt
= 0 ⇒ F conserved. (3.17)

For example, if H doesn’t depend on some qi, then

{pa, H} =
∂pa
∂qb

∂H

∂pb
− ∂pa
∂pb

∂H

∂qb
= 0,

so pa is a constant of motion.
Suppose F and G are constants of motion, Then, {F,G} is also a constant of motion since

{{F,G}, H} = {F, {G,H}}+ {G, {H,F}} = 0

by Jacobi. The constants of motion form a closed algebra under the Poisson bracket.
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Hamilton’s equations can be written in terms of Poisson brackets as

q̇a = {qa, H}, ṗa = {pa, H}. (3.18)

Finally, the Poisson brackets of the coordinates are:{
qa, qb

}
= 0, {pa, pb} = 0, {qa, pb} = δab . (3.19)

Angular momentum

Consider the angular momentum in Cartesian coordinates:

~L = ~r × ~p ⇔ La = ε c
ab x

bpc.

Let’s look at the Poisson bracket structure:

{L1, L2} =
{
x2p3 − x3p2, x

3p1 − x1p3

}
=
{
x2p3, x

3p1

}
+
{
x3p2, x

1p3

}
= −x2p1 + x1p2 = L3.

This generalises easily to:
{La, Lb} = ε c

ab Lc.

Furthermore, we have {
L2, La

}
= 2Lb{Lb, Lc} = 2Lbε a

bc La = 0.

The similarity to quantum mechanics is not an accident.

3.5 Liouville’s theorem

We will present two almost equivalent statements of Liouville’s theorem: one in terms of the
time evolution of a volume in phase space; the other in terms of the evolution of a density
function.

3.5.1 Phase space volumes

Theorem (Liouville 1). Consider some bounded region Ω in phase space. As time evolves,
although the shape of the region may change, the total volume of it remains constant.

Proof. Consider a 2n dimensional phase space. The volume element at a given point (q, p) is

dV = dq1 . . . dqn dp1 . . . dpn = dnq dnp . (3.20)

In time δt, the coordinates transform as

qa
δt−−→ q̃a(q, p) = qa + q̇a(q, p)δt+O

(
δt2
)
, pa

δt−−→ p̃a(q, p) = pa + ṗa(q, p)δt+O
(
δt2
)
, (3.21)

where we note that each q̇a and ṗa are functions of all coordinates (q, p). The volume element
transforms with the Jacobian:

dV
δt−−→ dṼ = dnq̃ dnp̃ = det(J(δt)) dnq dnp , (3.22)

where the Jacobian is given by

J(δ) =


∂q̃1
∂q1

· · · ∂q̃1
∂pn

...
. . .

...
∂p̃n
∂q1

· · · ∂p̃n
∂pn

 =


1 + δt∂q̇1∂q1

· · · δt ∂q̇1∂pn
...

. . .
...

δt∂ṗn∂q1
· · · 1 + δt∂ṗn∂pn

 = 1+δt


∂q̇1
∂q1

· · · ∂q̇1
∂pn

...
. . .

...
∂ṗn
∂q1

· · · ∂ṗn
∂pn

. (3.23)
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Now, we have to take a short linear algebra aside. For any matrix M , the determinant can be
expressed in terms of the eigenvalues as

det(M) =
∏
i

λi ⇒ det(1 + εM) =
∏
i

(1 + ελi) = 1 + εTr(M) +O
(
ε2
)
, (3.24)

where we used
∑
i λi = Tr(M). Now, combining equations (3.23) and (3.24), we get that

dṼ =

(
1 + δt

[
∂q̇a

∂qa
+
∂ṗa
∂pa

]
+O

(
δt2
))

dnq dnp . (3.25)

By Hamilton’s equations, the terms in square brackets vanish:

∂q̇a

∂qa
+
∂ṗa
∂pa

=
∂2H

∂qa∂pa
− ∂2H

∂pa∂qa
= 0.

Hence, we get
dṼ = det(J(δt)) dV =

(
1 +O

(
δt2
))
dV . (3.26)

Noting that J(t = 0) = 1, we have

det(J(δt)) = det(J(0)) +O
(
δt2
)
⇒ d(det(J))

dt
= 0. (3.27)

We’re basically done at this stage. But, for completeness, we can consider the finite volume V
of a region Ω:

V (t) =

∫
Ω

dV ,

which, after time δt becomes

V (t+ δt) =

∫
Ω̃

dṼ =

∫
Ω

(
1 +O

(
δt2
))
dV = V (t) +O

(
δt2
)
⇒ dV

dt
= 0.

This completes our proof.

3.5.2 Distributions over phase space

The second, almost equivalent statement of the theorem is concerned with distribution functions
over phase space. Suppose we have an ensemble of N identical, independent systems distributed
in a 2n dimensional phase space by some distribution ρ(q, p, t). Each system is described by
a corresponding point in phase space at a given time. Also suppose the time evolution for all
systems is governed by the same Hamiltonian H(q, p, t).

The normalisation condition is

N =

∫
ρ(q, p, t) dnq dnp ∀ t, (3.28)

where the integral is taken over all phase space. Correspondingly, the number of systems in a
volume Ω of phase space is given by

NΩ =

∫
Ω

ρ(q, p, t) dnq dnp . (3.29)

Theorem (Liouville 2). The distribution ρ is constant along every trajectory in phase space.
That is, dρ/dt = 0.
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Proof. From equation (3.29), it follows that

dNΩ

dt
=

∫
Ω

∂ρ

∂t
dnq dnp . (3.30)

We can express this in terms of some phase space flux ~J so that

dNΩ

dt
= −

∮
∂Ω

~J · d~S = −
∫

Ω

~∇ · ~J dnq dnp , (3.31)

where we used the divergence theorem. Note that since we are dealing with a 2n dimensional
phase space, the ~∇ operator is given by

~∇ =

(
∂

∂q1
, . . . ,

∂

∂qn
,
∂

∂p1
, . . .

∂

∂pn

)
.

Combining equations (3.30) and (3.31) and noting we can take an infinitesimally small region
Ω yields

−
∫

Ω

~∇ · ~J dnq dnp =

∫
Ω

∂ρ

∂t
dnq dnp ⇒ ∂ρ

∂t
+ ~∇ · ~J = 0.

This is the continuity equation for a distribution over phase space.
Since ρ(q, p, t) is the number density of systems, the flux can be expressed as

~J(q, p, t) = ρ(q, p, t)~v(q, p, t),

where ~v is the velocity of the flow in phase space:

~v =
(
q̇1, . . . , q̇n, ṗ1, . . . , ṗn

)
=

(
∂H

∂p1
, . . . ,

∂H

∂pn
,−∂H

∂q1
, . . . ,− ∂H

∂qn

)
This implies

~∇ · ~v =
∂2H

∂qa∂pa
− ∂2H

∂pa∂qa
= 0.

Hence, we have

∂ρ

∂t
= −~∇ · (~vρ) = −~v · ~∇ρ = −

(
q̇a

∂ρ

∂qa
+ ṗa

∂ρ

∂pa

)
⇒ dρ

dt
= 0. (3.32)

This completes our proof.

Although the two theorems seem different, we can infer one from the other. Consider the
number of systems in some region Ω. As we follow Ω along its flow in phase space, we expect
the number of systems enclosed in the region to be conserved, that is

NΩ(t) = NΩ̃(t+ δt) ⇒
∫

Ω

ρ(q, p, t) dnq dnp =

∫
Ω̃

ρ(q̃, p̃, t+ δt) dnq̃ dnp̃ . (3.33)

By the first statement of the theorem, we have

dnq̃dnp̃ =
(
1 +O

(
δt2
))
dnq dnp ,

which implies∫
Ω̃

ρ(q̃, p̃, t+ δt) dnq̃ dnp̃ =

∫
Ω

(
ρ(q̃, p̃, t+ δt) +O

(
δt2
))
dnq dnp =

∫
Ω

ρ(q, p, t) dnq dnp .

Substituting q̃ = q + q̇δt and p̃ = p+ ṗδt and taking Ω to be small, we conclude

ρ(q + q̇δt, p+ ṗδt, t+ δt)− ρ(q, p, t) = O
(
δt2
)
⇒ dρ

dt
= 0.

The reason I’ve said the two statements were almost equivalent is that the first statement merely
a statement about volume flows in phase space and doesn’t introduce any distribution function.
In this sense, it is more fundamental and, as it turns out, it is a direct consequence of the
symplectic manifold structure of phase space.
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3.5.3 Liouville equation

We can rewrite dρ/dt = 0 in the form

∂ρ

∂t
= −

(
∂ρ

∂qa
q̇a +

∂ρ

∂pa
ṗa

)
=

∂ρ

∂pa

∂H

∂qa
− ∂ρ

∂qa
∂H

∂pa
= {H, ρ}. (3.34)

This is known as the Liouville equation. It is a statement of Liouville’s theorem in terms of the
distribution function.

3.6 Canonical Transformations

Recall that the Euler-Lagrange equations were coordinate invariant, meaning they took the same
form under coordinate transformations of the form qa 7−→ Qa(q). Now that we are dealing with
the Hamiltonian formalism, we are interested in the class of transformations of the form

qa 7−→ Qa(q, p), and pa 7−→ Pa(q, p) (3.35)

which leave Hamilton’s equations invariant. By this, we mean that we require

Q̇a =
∂H

∂Pa
, and Ṗa = − ∂H

∂Qa
. (3.36)

Such transformations are called canonical transformations. We may explicitly write out this
condition:

Q̇a = {Qa, H} =
∂Qa

∂qb
∂H

∂pb
− ∂Qa

∂pb

∂H

∂qb
=
∂H

∂qb
∂qb

∂Pa
+
∂H

∂pb

∂pb
∂Pa

=
∂H

∂Pa
, (3.37)

Ṗa = {Pa, H} =
∂Pa
∂qb

∂H

∂pb
− ∂Pa
∂pb

∂H

∂qb
= −∂H

∂qb
∂qb

∂Qa
− ∂H

∂pb

∂pb
∂Qa

= − ∂H

∂Qa
. (3.38)

Comparing terms gives us a set of equations relating q, p,Q, P . These put the following con-
straints on Qa and Pa:

∂qb

∂Pa
= −∂Q

a

∂pb
,

∂Qa

∂qb
=

∂pb
∂P a

,
∂Pa
∂qb

= − ∂pb
∂Qa

,
∂Pa
∂pb

=
∂qb

∂Qa
. (3.39)

As you can see, things tend to become too tedious, too quickly with this notation. Instead,
consider the 2n-tuple ~x = (~q, ~p) and the 2n× 2n matrix J :

J =

(
0n×n 1n×n
−1n×n 0n×n

)
. (3.40)

J is an example of a symplectic form. Hamilton’s equations now read:

~̇x = J
∂H

∂~x
⇔ ẋi =

2n∑
j=1

Jij
∂H

∂xj
. (3.41)

Now, consider the transformation

~x 7−→ ~y(~x) =
(
~Q(q, p), ~P (q, p)

)
. (3.42)

Then, we have

ẏi =
∑
j

∂yi
∂xj

ẋj =
∑
jk

∂yi
∂xj

Jjk
∂H

∂xk
=
∑
jk`

∂yi
∂xj

Jjk
∂H

∂y`

∂y`
∂xk

. (3.43)
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Now, note that ∂yi/∂xj is the Jacobian associated with the transformation. Denote this by
2n× 2n matrix M :

M =
∂~y

∂~x
=

(
[∂Q/∂q ]n×n [∂Q/∂p ]n×n
[∂P/∂q ]n×n [∂P/∂p ]n×n

)
. (3.44)

Now, we can write equation (3.43) as

ẏi =
∑
jk`

MijJjkM`k
∂H

∂y`
⇔ ~̇y =

(
MJMT

)∂H
∂~y

. (3.45)

For the transformation to be canonical, we require

~̇y = J
∂H

∂~y
⇒ MJMT = J. (3.46)

So, ~x 7−→ ~y is a canonical transformation if and only if MJMT = J . This is know as the
symplectic condition. Matrices M which obey this are said to be symplectic.

Let’s have a closer look at the symplectic condition. Suppose M is any matrix of the form

M =

(
A B
C D

)
,

where each entry A,B,C,D is an n× n matrix. Then,

MJMT =

(
A B
C D

)(
0 1
−1 0

)(
A C
B D

)
=

(
A B
C D

)(
B D
−A −C

)
=

(
0 AD −BC

BC −AD 0

)
.

Then, our requirement simply reduces to AD − BC = 1. Expressed in terms of the Jacobian,
this is

∂Qa

∂qb
∂Pb
∂pc
− ∂Qa

∂pb

∂Pb
∂qc

= δac . (3.47)

3.6.1 Poisson brackets

How do Poisson brackets transform under canonical transformations? Consider the Poisson
bracket of two arbitrary functions f and g:

{f, g}~x =
∂f

∂xi
Jij

∂g

∂xj
=

∂f

∂yk
MkiJij

∂g

∂y`
M`j =

∂f

∂yk

(
MJMT

)
k`

∂g

∂y`
=

∂f

∂yk
Jk`

∂g

∂y`
= {f, g}~y,

(3.48)
Hence, Poisson brackets are left invariant under canonical transformations. This can equiva-
lently be taken as a defining property of a canonical transformation.

We can do one better and even claim the following: A transformation is canonical if and
only if the Poisson bracket structure between the coordinates and momenta are unchanged:{

Qa, Qb
}

= {Pa, Pb} = 0, and {Qa, Pb} = δab . (3.49)

Proof. First, note that the Poisson bracket structure between q and p can be written as

{xi, xj} =
∑
k`

∂xi
∂xk

Jk`
∂xj
∂x`

= Jij .

Following the same method, we have

{yi, yj} =
(
MJMT

)
ij

= Jij ⇔ MJMT = J. (3.50)

This completes the proof.
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Note that

MJMT =

(
{Qi, Qj}n×n {Qi, Pj}n×n
{Pi, Qj}n×n {Pi, Pj}n×n

)
. (3.51)

So, canonical transformations preserve the Poisson bracket structure, and whenever the Poisson
bracket structure is preserved, the transformation must be canonical.

Transformation of coordinates

We know from the Lagrangian formalism that under a coordinate transformation qi 7−→ Qi(q),
the Euler-Lagrange equations are left invariant. Let’s check what constraint this puts on Pa in
the Hamiltonian formalism.

We refer to equation (3.47) and note that ∂Q/∂p ≡ 0, so

∂Qa

∂qb
∂Pb
∂pc

= δac ⇒ Pa =
∂qb

∂Qa
pb.

This also follows from Pa = ∂L
/
∂Q̇a , as we would expect.

3.6.2 Infinitesimal canonical transformations

Suppose we consider transformations of the form

qa 7−→ Qa(q, p; θ) and pa 7−→ Pa(q, p; θ), (3.52)

which depend continuously on some parameter θ. We set θ = 0 to correspond to our original
coordinates such that Qa(q, p, 0) = qa and Pa(q, p, 0) = pa. We can write such an infinitesimal
transformation as

qa 7−→ Qa = qa + θ
dQa

dθ

∣∣∣∣
θ=0

+O
(
θ2
)
, (3.53)

pa 7−→ Pa = pa + θ
dPa
dθ

∣∣∣∣
θ=0

+O
(
θ2
)
. (3.54)

Requiring that this is canonical puts constraints on the functions dQa/dθ and dPa/dθ . From
equation (3.47) we find that this constraint, to linear order in θ, is

∂

∂qb

(
dQa

dθ

)
= − ∂

∂pb

(
dPa
dθ

)
, (3.55)

which is satisfied if
dQa

dθ
=
∂G

∂pa
and

dPa
dθ

= − ∂G
∂qa

(3.56)

for some functionG(q, p) which is called the generator. An infinitesimal canonical transformation
must then look like:

qa 7−→ Qa = qa + θ
∂G

∂pa
+O

(
θ2
)
, (3.57)

pa 7−→ Pa = pa − θ
∂G

∂qa
+O

(
θ2
)
. (3.58)

Note that so far we have been interpreting transformations in the passive sense: relabeling same
points on phase space with different labels (choice of coordinates). A one-parameter family
of canonical transformations can instead be viewed in an active sense: as taking us from one
point in phase space (q, p) to another (q(θ), p(θ)). As we vary the parameter θ, we flow along
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trajectories in phase space. The components of the tangent vector to the trajectories are given
by

dqa

dθ
=
∂G

∂pa
, and

dpa
dθ

= − ∂G
∂qa

. (3.59)

This is just Hamilton’s equations with the Hamiltonian replaced by generator G and time
replaced by parameter θ. Then, time evolution itself can be thought of as a canonical transfor-
mation of coordinates

(q(t0), p(t0)) 7−→ (q(t), p(t)),

generated by the Hamiltonian.

3.6.3 Noether’s theorem

Consider an infinitesimal canonical transformation generated by G. The generator G is called
a symmetry of the Hamiltonian if, under the transformation, the Hamiltonian is left invariant.
To see when this happens, simply consider the variation δH:

δH =
∂H

∂qa
δqa +

∂H

∂pa
δpa = θ

(
∂H

∂qa
∂G

∂pa
− ∂H

∂pa

∂G

∂qa

)
= θ{H,G}. (3.60)

G is a symmetry if {H,G} = 0. But we know already that Ġ = {G,H}. So if G is a symmetry,
it is obviously a conserved quantity.

3.6.4 Generating functions

Generating functions provide a different approach to obtaining canonical transformations. Now,
let’s consider transformations which can have explicit time dependence so that

qa 7−→ Qa = Qa(q, p, t) and pa 7−→ Pa = Pa(q, p, t). (3.61)

In general such transformations modify the Hamiltonian (as we will see). In this case, the
transformations are said to be canonical if there exists a new Hamiltonian K = K(Q,P, t) such
that

Q̇a =
∂K

∂Pa
and Ṗa = − ∂K

∂Qa
. (3.62)

Let’s now look at the action in both coordinates:

S[q, p] =

∫
paq̇

a −H(q, p, t) dt and S[Q,P ] =

∫
PaQ̇

a −K(Q,P, t) dt . (3.63)

We require that δS[q, p] = 0⇔ δS[Q,P ] = 0. This implies

λ(paq̇
a −H(q, p, t)) = PaQ̇

a −K(Q,P, t) + Ḟ . (3.64)

for some constant λ and function F . If λ = 1, the transformation is said to be canonical;
otherwise it is extended canonical. Finally, if Q = Q(q, p) and P = P (q, p) without explicit
time dependence, the transformation is restricted canonical - which is what we considered so
far. Now, we only impose λ = 1.

Note that F should be a function of q,Q and t. We can infer this by looking at dF :

dF = Ḟ dt = pa dq
a − Pa dQa + (K −H) dt . (3.65)

We can perform Legendre transforms to obtain functions of other phase space coordinates. If
the Legendre transform is a function of one of (q, p) and one of (Q,P ), it is called a generating
function. There are four types:
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1. Let F = F1(q,Q, t). This relates q to Q. Then,

q̇apa −H = Q̇aPa −K +
∂F1

∂t
+
∂F1

∂qa
q̇a +

∂F1

∂Qa
Q̇a. (3.66)

Matching the terms yields

pa =
∂F1

∂qa
, Pa = − ∂F1

∂Qa
, K = H +

∂F1

∂t
. (3.67)

This gives us the rest of the transformation pa = pa(q,Q, t), Pa = Pa(q,Q, t).

2. Now, we simply take Legendre transforms. Let F = F2(q, P, t) −QaPa, where F2 relates
q to P . Then,

q̇apa −H = −QaṖa −K +
∂F2

∂t
+
∂F2

∂qa
q̇a +

∂F2

∂Pa
Ṗa, (3.68)

which yields

pa =
∂F2

∂qa
, Qa =

∂F2

∂Pa
, K = H +

∂F2

∂t
. (3.69)

3. F = qapa + F3(p,Q, t):

qa = −∂F3

∂pa
, Pa = − ∂F3

∂Qa
, K = H +

∂F3

∂t
. (3.70)

4. F = qapa −QaPa + F4(p, P, t):

qa = −∂F4

∂pa
, Qa =

∂F4

∂Pa
, K = H +

∂F4

∂t
. (3.71)

3.7 Integrability

Symmetries lead to conserved quantities. Conserved quantities impose additional constraints on
the system. To see this, let F (q, p) be a conserved quantity. Then, the constraint is of the form

Ḟ = {F,H} = 0.

Since the Hamiltonian is a function of (q, p), each such symmetry gives a constraint between the
coordinates and momenta. The phase space flow is constrained to be on a surface of constant
F .

If there are enough symmetries so that a solution to Hamilton’s equations can be obtained
by just integration, the system is said to be integrable.

For a 2n dimensional phase space, integrability requires n independent conserved quantities
Fi with the additional conditions

{Fi, Fj} = 0 ∀ i, j.
Such functions Fi and Fj are said to be in involution. As it turns out, the topology of the
surface we are constrained on in the phase space is that of an n-torus.

3.8 Action-Angle Variables

If a system is integrable, we expect n conserved quantities. One way to naturally obtain n
conserved quantities is to have n ignorable coordinates. Supposing the Hamiltonian has no
explicit q dependence, the n generalised momenta are conserved:

ṗa = −∂H
∂qa
≡ 0.

We are interested in a transformation (q, p) 7−→ (θ, I) which satisfy:
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1. New momenta are functions of the conserved quantities: Ia = Ia(F ).

2. New coordinates are all ignorable - Hamiltonian has no explicit θ dependence.

3. Transformation is restricted canonical:

H(q, p) 7−→ H(θ, I) = H(I),

q̇a =
∂H

∂pa
7−→ θ̇a =

∂H

∂Ia
= ωa(I),

ṗa = −∂H
∂qa
7−→ İa = −∂H

∂θa
≡ 0,

where ωa(I) are functions of I.

The variables (θ, I) are called the angle-action variables. Since Ia are constant, all angle variables
evolve at uniform rates ωa(I). The equations of motion are integrated to give:

θa = ωa(I)t+ βa, Ia = constant, (3.72)

for integration constants βa.
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