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1 COMPLEX ANALYSIS

1 Complex Analysis

We are interested in the calculus of functions of complex variables on the complex plane. Let’s
start with properties of complex numbers and the complex plane.

1.1 Complex numbers

Any complex number z ∈ C can be written as a sum of real and imaginary parts, such that
z = x+ iy where x, y ∈ R. The complex conjugate z∗ of any z = x+ iy is defined as

z∗ := x− iy. (1.1)

It then follows that the real and imaginary parts of z are given by

Re(z) =
1

2
(z + z∗), Im(z) =

1

2i
(z − z∗). (1.2)

We associate with every z ∈ C a non-negative real number r ≥ 0 called the modulus:

r := |z| =
√
zz∗ =

√
x2 + y2. (1.3)

Note that this defines a metric d : C2 → R on C of the form

d(z1, z2) = |z1 − z2|. (1.4)

This is just a fancy way of saying that we define the distance between complex numbers as
above.

We define the argument θ ∈ R of a complex number z as:

z = reiθ ⇒ θ = arctan
(y
x

)
+ 2πn, n ∈ Z. (1.5)

Note that this definition of θ is not unique since e2πi = 1. We may express x and y as functions
of r and θ as follows:

x = r cos θ, y = r sin θ. (1.6)

The principal value of the argument is the value of θ in the range (−π, π].

1.2 Subsets of the complex plane

Definition (Open ball). Given a metric space M with metric d(·, ·), an open ball of radius r
about point x ∈M is defined as

Br(x) := {y ∈M : d(x, y) < r}. (1.7)

In other words, Br(x) ⊂M contains all points of distance less than r from x.

For the following, let M = C with the metric defined by equation (1.4).

Definition (Open subset). A subset U ⊆ C is open if ∀z ∈ U , there exists some ε > 0 such
that the open ball Bε(z) ⊆ U .

Definition (Neighbourhood). A neighbourhood of a point z ∈ C is an open subset U ⊆ C
containing z.

Definition (Path-connected subset). A subset U ⊆ C is path-connected if ∀z1, z2 ∈ U there
exists some γ : [0, 1]→ U continuous such that γ(0) = z1 and γ(1) = z2.
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1.3 Differentiability of complex functions 1 COMPLEX ANALYSIS

Path-connected Not path-connected

Definition (Domain). A domain is a non-empty open path-connected subset of C.

1.3 Differentiability of complex functions

Definition. A function f : U → C is differentiable at z0 ∈ U if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists. The derivative is given by the limit.

It is implicitly stated that the limit should not depend on which direction z approaches z0,
as there are infinitely many ways to do so.

Definition (Analytic/holomorphic function). A function f is analytic or holomorphic at z0 ∈ U
if it is differentiable on a neighbourhood Bε(z0) of z0.

Definition (Entire function). Functions that are analytic in C are called entire functions.

Proposition. Any complex function f : U → C can be written as a sum of two functions
u, v : R2 → R such that f(z) = u(x, y) + iv(x, y) where z = x+ iy.

Proof. We note that u(x, y) = Re(f(z)) and v(x, y) = Im(f(z)). Hence, we can explicitly state

u(x, y) =
1

2
(f(x+ iy) + f∗(x+ iy)), v(x, y) =

1

2i
(f(x+ iy)− f∗(x+ iy))

for any f(z). Note that for any z0 ∈ U , we have f(z0) ∈ C. Hence, u(x0, y0), v(x0, y0) ∈ R.

Proposition (Cauchy-Riemann conditions). Let f : U → C, and write f(z) = u(x, y)+iv(x, y).
Then, f is complex differentiable at z if and only if

ux = vy, vx = −uy, (1.8)

evaluated at z = x+ iy. These are the Cauchy-Riemann equations. The derivative is then given
by

f ′(z) = ux(x, y) + ivx(x, y) = vy(x, y)− iuy(x, y). (1.9)

Proof. We will show that the limit

f ′(z) = lim
δ→0

f(z + δ)− f(z)

δ

is independent of how δ ∈ C approaches zero if and only if Cauchy-Riemann conditions are
satisfied.
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1.3 Differentiability of complex functions 1 COMPLEX ANALYSIS

Since δ can approach zero along any direction, we let δ = (α + iβ)ε, for some α, β, ε ∈ R.
As ε→ 0, δ → 0 regardless of α and β (as long as both are not zero). Taking the limit yields

f ′(z) = lim
δ→0

f(z + δ)− f(z)

δ

=
1

(α+ iβ)
lim
ε→0

u(x+ αε, y + βε) + iv(x+ αε, y + βε)− u(x, y)− iv(x, y)

ε

=
1

(α+ iβ)
lim
ε→0

αux + βuy + iαvx + iβvy +O
(
ε2
)

ε

=
α(ux + ivx) + iβ(−iuy + vy)

α+ iβ
.

Where we assumed u and v were differentiable at least once. Now, we require the derivative to
be independent of α and β, as they determine the direction of δ approaching zero. This can
only be satisfied if

ux + ivx = vy − iuy,

which are the Cauchy-Riemann conditions.

It is useful to consider an alternative (but equivalent) definition for the derivative of f(z): a
function f(z) is said to be (complex) differentiable at z ∈ C if there exists some f ′(z) such that
for any δ ∈ C

f(z + δ) = f(z) + δf ′(z) + o(δ). (1.10)

If it exists, f ′(z) is the derivative of f at z.

Proposition. The same rules of differentiation (sum, product, chain) hold for all complex
differentiable functions.

Proof. We take the definition given by equation (1.10). Let f, g : C→ C.

1. (Sum) Consider (f + g)(z) = f(z) + g(z). Then,

(f + g)(z + δ) = f(z + δ) + g(z + δ) = (f + g)(z) + δf ′(z) + δg′(z) + o(δ)

⇒ (f + g)′ = f ′ + g′.

2. (Product) Consider (fg)(z) = f(z)g(z):

(fg)(z + δ) = (f(z) + δf ′(z))(g(z) + δg′(z)) + o(δ) = (fg)(z) + δ(f ′(z)g(z) + f(z)g′(z)) + o(δ)

⇒ (fg)′ = f ′g + fg′.

3. (Chain) Consider (f ◦ g)(z) = f(g(z)):

(f ◦ g)(z + δ) = f(g(z + δ)) = f(g(z) + δg′(z) + o(δ)) = f(g(z)) + δg′(z)f ′(g(z)) + o(δ)

⇒ (f ◦ g)′(z) = g′(z)f ′(g(z)).

Example. f(z) = z∗ is not analytic. We express f(z) as f(x + iy) = x − iy, and look at the
Cauchy-Riemann conditions.

ux = 1 6= −1 = vy, uy = 0 = −vx.

One of the conditions does not hold for any z ∈ C, hence the function is not analytic at any
point.
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1.4 Integration

In real analysis, an integral is taken over a real interval. In complex analysis, we require a path
instead. The integral might differ depending on the path we choose, and there are infinitely
many paths joining two complex numbers.

1.4.1 Contours

We start with some definitions.

Definition (Curve). A curve γ(t) is a continuous map γ : [0, 1]→ C.

Definition (Closed curve). A curve γ(t) is said to be closed if γ(0) = γ(1).

Definition (Simple curve). A curve is said to be simple if it does not intersect itself, except on
the endpoints.

Definition (Piecewise smooth curve). A curve γ is said to be piecewise smooth if each of its
components has a bounded derivative which is continuous everywhere on [0, 1], except possibly
at a finitely many isolated points.

Definition (Contour). A contour is a piecewise smooth curve. From now on, γ will refer both
to the map and its image. So, the curve traversed in C will be referred to as γ. We denote the
contour traversed in the opposite direction as −γ. Formally,

(−γ)(t) = γ(1− t). (1.11)

We define the sum of two contours, γ1 + γ2, joined end-to-end with the condition γ1(1) = γ2(0)
as

(γ1 + γ2) (t) =

{
γ1(2t) t < 1

2 ,

γ2(2t− 1) t ≥ 1
2 .

(1.12)

A piecewise contour:

Definition (Contour integral). The contour integral of a function f : U → C over some contour
γ is defined as the infinite sum (analogous to a Riemann sum over R):∫

γ

f(z) dz = lim
∆→0

∑
k

f(γ(tk)) (γ(tk+1)− γ(tk)) , (1.13)

where the interval t ∈ [0, 1] is split into discrete tk with the condition

∆ = max
i=0,··· ,i=N

[ti+1 − ti] (1.14)

approaches zero.

We can rewrite this, using the definition of a Riemann sum, as an integral over t ∈ [0, 1].
First, we consider the γ term, which can be written as

γ(tk+1)− γ(tk) = γ′(tk)δtk + o(δtk) (1.15)

since it has a bounded continuous derivative. As δtk → 0, we get a Riemann integral:∫
γ

f(z) dz =

∫ 1

0

f(γ(t))γ′(t) dt . (1.16)
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Proposition. Properties of contour integrals:

1. For any two contours γ1, γ2, if (γ1 + γ2) is also a contour then we have∫
γ1+γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz , (1.17)

for all f : U → C such that (γ1 + γ2) ⊂ U .

Proof. We use equations (1.12) and (1.16) to write∫
γ1+γ2

f(z) dz =

∫ 1

0

dt f((γ1 + γ2)(t))(γ1 + γ2)
′
(t)

=

∫ 1/2

0

dt f(γ1(2t))2γ′1(2t) +

∫ 1

1/2

dt f(γ2(2t− 1))2γ′2(2t− 1).

We now let w = 2t for the first integral, and w = 2t− 1 for the second. This yields∫ 1

0

f(γ1(w))γ′1(w) dw +

∫ 1

0

f(γ2(w))γ′2(w) dw =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz .

Hence, the proposition holds.

2. For any contour γ, the integral over it traversed backwards, −γ, is given by∫
γ

f(z) dz = −
∫
−γ

f(z) dz . (1.18)

Proof. Substituting t = 1− w to equation (1.16) yields∫ 1

0

f(γ(t))γ′(t)dt =

∫ 0

1

f(γ(1− w)) (−γ′(1− w)) (− dw)

= −
∫ 1

0

f(γ(1− w))γ′(1− w) dw

= −
∫
−γ

f(z) dz ,

where we used γ(1− t) = (−γ)(t).

3. Let γ be a contour from a to b, i.e. γ(0) = a and γ(1) = b for any a, b ∈ C. Then, we have∫
γ

f ′(z) dz = f(b)− f(a). (1.19)

Proof. By definition, we have∫
γ

f ′(z) dz = lim
∆→0

∑
k

f ′(γ(tk))(γ(tk+1)− γ(tk)),

and

f ′(γ(ti)) = lim
∆γ(ti)→0

f(γ(ti) + ∆γ(ti))− f(γ(ti))

∆γ(ti)
,
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assuming the limit exists for all ti. Now, define ∆γ(ti) = γ(ti+1) − γ(ti), noting that in
the limit ∆→ 0, we have ∆γ(ti)→ 0 ∀ ti ∈ [0, 1]. Hence, the integral becomes

lim
∆→0

∑
k

f(γ(tk+1))− f(γ(tk))

γ(tk+1)− γ(tk)
(γ(tk+1)− γ(tk)) = f(γ(1))− f(γ(0))

since all except the first and the last term of the sum cancel.

4. (Integration by substitution) Let f : U → C, φ : D → U and u ∈ U , z ∈ D. We then have∫
γz

f(φ(z))φ′(z) dz =

∫
γu

f(u) du , (1.20)

where γu(t) = φ(γz(t)).

Proof. The proof is straightforward, working from the definition of the integral:∫
γz

f(φ(z))φ′(z) dz =

∫ 1

0

f(φ(γz(t)))φ
′(γz(t))γ

′
z(t) dt

=

∫ 1

0

f(γu(t))γ′u(t) dt

=

∫
γu

f(u) du .

5. (Integration by parts) Let u and v be analytic functions, and let γ be a contour over the
domains of u and v. Then, we have∫

γ

u′v dz = uv

∣∣∣∣γ(1)

γ(0)

−
∫
γ

uv′ dz . (1.21)

Proof. By the chain rule, we have u′v = (uv)′ − uv′. So,∫
γ

u′v dz =

∫
γ

(uv)′ − uv′dz = uv

∣∣∣∣γ(1)

γ(0)

−
∫
γ

uv′ dz ,

where we used equation (1.19).

6. If γ has length L and |f(z)| is bounded on γ by some M ∈ R, we have∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ML. (1.22)

Proof. We have ∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ∫
γ

|f(z)|| dz | ≤
∫
γ

M | dz | = ML.

Some properties related to absolute values of integrals were assumed.
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1.4.2 Cauchy’s theorem

Definition (Simply connected domain). A domain D ⊆ C is simply connected if every closed
curve in D encloses only points in the domain. (i.e. it doesn’t have holes.)

simply connected multiply connected

Theorem (Cauchy’s theorem). If f(z) is analytic in a simply connected domain D, then for
every closed contour γ in D, ∮

γ

f(z) dz = 0. (1.23)

Proof. We will use Green’s theorem, which states that for real functions P andQ with continuous
partial derivatives, we have∮

∂S

(P dx+Qdy) =

∫
S

(∂xQ− ∂yP ) dx dy .

Letting f(z) = u(x, y) + iv(x, y), we have∮
γ

f(z) dz =

∮
γ

(u(x, y) + iv(x, y)) (dx+ i dy)

=

∮
γ

(u+ iv) dx+ (−v + iu) dy

=

∫
S

(∂x(u+ iv)− ∂y(−v + iu)) dx dy

=

∫
S

(−vx + iux − uy − ivy) dx dy = 0

due to Cauchy-Riemann conditions. We require u and v to have continuous partial derivatives
in S for Green’s theorem to hold.

Note. A more general proof that doesn’t require u and v to have continuous partial derivatives
exists, it’s sometimes called the Cauchy-Goursat theorem.

Proposition (Contour deformation). Let γ1 and γ2 be contours from some a to b in C. Then,
for all f that is analytic on γ1 and γ2, and on the region bounded by them, we have∫

γ1

f(z) dz =

∫
γ2

f(z) dz . (1.24)

Proof. If the contours do not intersect, then γ1 + (−γ2) is a closed contour and we have

0 =

∮
γ1−γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz .

If the contours intersect, then consider every individual closed contour they form and the same
reasoning applies.
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1.5 Cauchy’s integral formula

So far, we have considered simply connected domains. However, we can generalise Cauchy’s
theorem to domains which are not simply connected.

Definition (Multiply connected domain). A domain which is not simply connected is called
multiply connected. A domain would be multiply connected even if there was a hole at a single
point in the domain.

Note (Orientation of closed contours). With closed contours, it doesn’t matter where we start
and end, as long as we traverse a full cycle. However, there is ambiguity in the direction of
traversal. The usual direction is anticlockwise, or in “positive sense”. We can also traverse
clockwise, which would be in “negative sense”.

Proposition. Given a multiply connected domain, the integral over any closed contour γ0

enclosing n “holes” (open connected regions enclosed by the domain where the function f with
said domain would not be defined) can be expressed as∮

γ0

f(z) dz =

n∑
i=1

∮
γi

f(z) dz , (1.25)

where each γi is a contour enclosing the ith hole and the orientations of the contours are the
same.

Proof. We can construct a closed contour which does not enclose any holes by combining the
initial contour with contours that enclose each hole, where the two are oriented opposite to each
other. In the limit, the path joining the contours does not contribute to the integral and can be
omitted from the expression, in which case we would have

0 =

∮
γ

f(z) dz =

∮
−γ0

f(z) dz +

n∑
i=1

∮
γi

f(z) dz ,

where we have used Cauchy’s theorem. The minus sign in front of γ0 denotes the opposite
orientation. An example of this for a domain with two holes is shown below.

γ0

γ2

γ1

The function is analytic on the light gray region, and we take the limit as the red and blue
dashed lines approach each other. The regions where the function is not analytic need not be

circular.
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1.5 Cauchy’s integral formula 1 COMPLEX ANALYSIS

We can use this to artificially create a singluar hole in a simply connected domain, and relate
the value of the function at that point to an integral which encloses it. This is the idea behind
Cauchy’s integral formula.

Theorem (Cauchy’s integral formula). Suppose f is analytic on a simply connected domain
D ⊆ C, and let z ∈ D. Then

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
dξ , (1.26)

for any anticlockwise closed contour γ ∈ D enclosing z.

z

γε

γ

Proof. We note that the integrand is undefined at ξ = z, hence its domain is not simply con-
nected. Let γε = ∂Bε(z) be a circle of radius ε centered at z. Then, by the previous proposition
we have ∮

γ

f(ξ)

ξ − z
dξ =

∮
γε

f(ξ)

ξ − z
dξ .

We can evaluate the right hand side by letting ξ = z + εeiθ:∮
γε

f(ξ)

ξ − z
dξ =

∫ 2π

0

f(z + εeiθ)

εeiθ
iεeiθ dθ

= i

∫ 2π

0

(f(z) +O(ε)) dθ

= 2πif(z) +O(ε).

In the limit ε→ 0, the result follows.

Note. This result tells us that knowing f on a closed boundary γ, we can compute the value
of f at any point enclosed by the boundary. One way of looking at this is to express f as
f = u+ iv. Since f is analytic, u and v are solutions to Laplace’s equation. Stating the value of
f on a closed boundary is equivalent to Dirichlet boundary conditions, which produces a unique
solution - in this case the function f .

Corollary (Derivatives of f). We can now compute the first derivative of f as:

f ′(z) =
1

2πi

∮
γ

∂

∂z

(
f(ξ)

ξ − z

)
dξ =

1

2πi

∮
γ

f(ξ)

(ξ − z)2
dξ . (1.27)

Similarly, the nth derivative is given by

f (n)(z) =
n!

2πi

∮
γ

f(ξ)

(ξ − z)n+1
dξ . (1.28)

Hence, at any point z ∈ D where f is analytic, all of its derivatives exist.
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1.6 Taylor series 1 COMPLEX ANALYSIS

Theorem (Liouville’s theorem). Any bounded entire function is constant.

Proof. Let f be an entire function, and let |f | ≤M for some M ∈ R. Then, by Cauchy’s integral
formula we have for any z ∈ C

f ′(z) =
1

2πi

∮
γ

f(ξ)

(ξ − z)2
dξ .

Now, choose γ = ∂Br(z) to be a circle of radius r centered at z. Hence, we have ξ = z + reiθ

on γ. This gives

f ′(z) =
1

2πi

∫ 2π

0

f(z + reiθ)

(reiθ)2
ireiθ dθ =

1

2πr

∫ 2π

0

f(z + reiθ)

eiθ
dθ .

Now, we use the condition |f | ≤M :

|f ′(z)| =
∣∣∣∣ 1

2πr

∫ 2π

0

f(z + reiθ)e−iθ dθ

∣∣∣∣ ≤ 1

2πr

∫ 2π

0

|f(z + reiθ)||e−iθ|| dθ |

≤ 1

2πr

∫ 2π

0

M | dθ |

=
M

r
.

Taking the limit as r →∞, we have that for all z ∈ C

lim
r→∞

|f ′(z)| = 0 ⇒ f ′(z) = 0.

Since the first derivative is zero everywhere, the function f is constant.

Proposition (Estimating derivatives). The upper bound to f (n) at some point z ∈ D is given
by

|f (n)(z)| ≤ n!
maxγ |f(ξ)|

Rn
(1.29)

where γ = ∂BR(z) and R can be as large as the distance to the nearest singularity.

Proof. By Cauchy’s formula we have

f (n)(z) =
n!

2πi

∮
γ

f(ξ)

(ξ − z)n+1
dξ

⇒ |f (n)(z)| ≤ n!

2πi

∮
γ

∣∣∣∣ f(ξ)

(ξ − z)n+1

∣∣∣∣ | dξ |
We now let γ = ∂BR(z) for some R ∈ R such that BR(z) encloses only points in D. So, we get

|f (n)(z)| ≤
∣∣∣∣ n!

2πi

∣∣∣∣ ∫ 2π

0

|f(ξ)|
|(Reiθ)n+1|

|Reiθ|| dθ | ≤ n! maxγ |f(ξ)|
2πRn+1

2πR = n!
maxγ |f(ξ)|

Rn
.

Hence, the proposition holds.

1.6 Taylor series

Proposition (Taylor series). If f is analytic in Br(z0) with r > |z − z0|, then it has a Taylor
series

Tf (z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n, (1.30)

which converges to f(z).

12



1.6 Taylor series 1 COMPLEX ANALYSIS

Proof. This is essentially just a corollary of Cauchy’s integral formula. We choose some contour
γ ∈ Br(z0) which encloses z and z0. Then, by the integral formula:

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
dξ =

1

2πi

∮
γ

f(ξ)

(ξ − z0)− (z − z0)
dξ

=
1

2πi

∮
γ

f(ξ)

ξ − z0

(
1

1− z−z0
ξ−z0

)
dξ

=
1

2πi

∮
γ

f(ξ)

ξ − z0

∞∑
n=0

(
z − z0

ξ − z0

)n
dξ

=

∞∑
n=0

(z − z0)n

n!

(
n!

2πi

∮
γ

f(ξ)

(ξ − z0)n+1
dξ

)

=

∞∑
n=0

f (n)(z0)

n!
(z − z0)n = Tf (z).

Note that we require |ξ − z0| > |z − z0| everywhere on γ, which can be ensured by choosing
γ = ∂Br>|z−z0|(z0).

Corollary. The Taylor series of a function analytic at z0 converges for all z ∈ D such that
|z − z0| < R where R is the distance from z0 to the nearest singularity. This follows from
condition for convergence of the geometric series above.

Proposition. If all derivatives f (n)(z0) are zero at some z0 ∈ D, then f ≡ 0 in D.

Proof. The Taylor series is identically zero in an open neighborhood of z0. We can take the
Taylor expansion at any point in the neighborhood, and the function will be identically zero
everywhere in the new neighborhood. This can be repeated to cover the entire domain, as it is
open.

D

z0

We can expand the function over new regions, starting from z0 and covering the entire
domain. The function is identically zero everywhere.

Proposition. If for all n, f (n)(z0) = g(n)(z0) at some point z0 ∈ D then f(z) ≡ g(z) in D.

Proof. Since f (n)(z0)−g(n)(z0) = 0 for all n, the result follows from the previous proposition.

Proposition. If f = g in some open subdomain of D, then f = g everywhere in D.

Proof. All the derivatives in the subdomain are equal, hence the result follows from the previous
proposition.

13
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1.6.1 Analytic continuation and branch cuts

We can use Taylor series to extend the domains of functions. This is known as analytic contin-
uation. The procedure is as follows: suppose an analytic function is defined on an open domain
which includes the point a ∈ C. If we want to know the value of the function at some b ∈ C
which is not in the domain, we draw a contour from a to b. Along the contour, we take the
Taylor series of the function, and if we are lucky we get bigger regions where the function is de-
fined (which we can as long as we don’t hit singularities.) If there are singularities in the region
bounded by two contours, we cannot apply contour deformation and in general our results will
depend on the contour we choose.

Example. The logarithm of x ∈ R is defined as the function f(x) that satisfies the following:

ef(x) = x.

We extend this definition to C by simply letting x be complex, such that

ef(z) = z.

Now, we can differentiate to obtain

f ′(z) =
1

z
⇒ log(z) =

∫ z

1

dz′

z′
.

Now, we can choose any path from z′ = 1 to z′ = z to obtain an expression for the logarithm.
Note that our answer will not be unique because of the singularity at z = 0. In fact, the integral
will pick up a factor of 2πi for each counterclockwise rotation around z = 0.

This singularity is known as a branch point, and in order to have a single valued function we
have to define branch cuts.

Definition (Branch point). Branch points of f(z) are points such that any neighborhood con-
tains contours around which f(z) varies continuously but does not return to its original value.
The function is said to have a branch point at infinity if f(1/z) has a branch point at 0.

For example, the logarithm has branch points at 0 and ∞. If we wish to make log z contin-
uous and single-valued, we must prevent any curve from encircling the origin. We do this by
introducing a branch cut from −∞ to 0 on the real axis. No curve is allowed to cross this cut.

Once we’ve decided where our branch cut is, we can use it to fix the values of θ lying in the
range (−π, π] and we’ve defined a branch of log z.

1.7 Laurent series, singularities and residues

1.7.1 Laurent series

We know that an analytic function can be expressed as a Taylor series. This implies the point
around which we concern ourselves with is analytic. We can do better and express a function
around a singularity if we include negative powers of z in the sum.

Proposition (Laurent Series). If f is analytic in an annulus r1 > |z − z0| > r2, then it has a
Laurent series

f(z) =

∞∑
−∞

cn(z − z0)n. (1.31)

This series converges to f(z) inside the annulus.

14
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γ1

z0r2

r1

γ2

z

Proof. We consider an annular contour and label the outer circle of radius r1 as γ1 and the inner
circle of radius r2 as γ2. The singularity is denoted as z0 (the behaviour of the function at any
point inside γ2 can be singular, it doesn’t matter). Then, from Cauchy’s integral formula we
have

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
dξ .

We note that we have, for any z inside the region bounded by γ, r2 < |z− z0| < r1. In the limit
of cross-cuts approaching each other, we have γ = γ1 − γ2 where the minus sign is due to the
orientation. So, the integral theorem applies:

f(z) =
1

2πi

{∮
γ1

f(ξ)

ξ − z
dξ −

∮
γ2

f(ξ)

ξ − z
dξ

}
For the first term, we have∮

γ1

f(ξ)

(ξ − z)
dξ =

∮
γ1

f(ξ)

(ξ − z0)− (z − z0)
dξ

=

∮
γ1

f(ξ)

ξ − z0

(
1

1− (z−z0)
ξ−z0

)
dξ

=

∮
γ1

f(ξ)

ξ − z0

∞∑
n=0

(
z − z0

ξ − z0

)n
dξ

=

∞∑
n=0

an(z − z0)n

where

an =

∮
γ1

f(ξ)

(ξ − z0)n+1
dξ .

The geometric series converges since r1 > |z − z0| ⇒ |ξ| > |z|.

15
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Similary, for the second integral we have∮
γ2

f(ξ)

(ξ − z)
dξ =

∮
γ2

f(ξ)

(ξ − z0)− (z − z0)
dξ

=

∮
γ2

−f(ξ)

z − z0

(
1

1− (ξ−z0)
z−z0

)
dξ

=

∮
γ2

−f(ξ)

z − z0

∞∑
n=0

(
ξ − z0

z − z0

)n
dξ

= −
∞∑
n=0

(z − z0)−(n+1)

∮
γ2

f(ξ)(ξ − z0)n dξ

= −
∞∑
n=0

bn+1(z − z0)−(n+1)

where

bn =

∮
γ2

f(ξ)(ξ − z0)n−1 dξ .

The geometric series converges since r2 < |z − z0| ⇒ |ξ| < |z|.
Combining the two results yields

f(z) =
1

2πi

{ ∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn(z − z0)−n

}
≡
∞∑
−∞

cn(z − z0)n

where we define cn as

cn =

{
an/2πi, n ≥ 0

b−n/2πi, n < 0
.

Hence, we get the Laurent series.

Example. f(z) = e1/z. From the Taylor series expansion of ez, we have

e1/z = 1 +
1

z
+

1

2z2
+ · · ·+ 1

n!zn
+ · · ·

Note. Taylor series arises as a special case of Laurent series where we only consider γ1.

1.7.2 Singularities and zeros

Singularities and zeros are, in some sense, opposites of each other.

Definition (Zeros). The zeros of an analytic function f are the points z0 such that f(z0) = 0.
A zero is of order N if in the function’s Taylor expansion the first non-zero coefficient is aN .

Definition (Simple zero). A zero of order 1 is called a simple zero.

Definition (Isolated singularity). Let f be singular at a point z0. This point is called an isolated
singularity if there exists a neighborhood of z0 such that the function f is analytic at every point
in the neighborhood (except z0). If no such neighborhood exists, the singularity is non-isolated.

Example. z = 0 is a non-isolated singularity of log(z) since it is not analytic at any point on
its branch cut.

Example. The function f = 1/ sin(1/z) has a non-isolated singularity at z = 0, as there always
exists singularities in any neighborhood of 0.
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If we have an isolated singularity around a point, then we can always draw an annulus
0 < |z − z0| < r within which the function is analytic and has a Laurent series. The different
types of singularities are as follows:

1. Branch point singularity. These are not isolated, and are not easy to work with.

2. Poles. Isolated singularity. If the negative power terms of the Laurent series terminate at
some integer N < 0, the singularity is called a pole.

3. Essential singularity. If an isolated singularity is not a pole, then it is an essential isolated
singularity.

4. Non-isolated singularity. If a singularity is not isolated, then it is non-isolated. These are
difficult to work with.

Example. f(z) = 1/z + 1/(z + 1) has poles at 0 and −1.

1.7.3 Residues

Definition (Residue). The residue of a function f at an isolated singularity is the coefficient
c−1 in its Laurent series around the singularity. We denote the residue of function f at z = z0

as Res(f, z0).

Proposition (Residue at simple poles). The residue of a function at a simple pole is simply
given by

Res(f, z0) = lim
z→z0

f(z)(z − z0). (1.32)

Proof. Writing f as its Laurent series, we have

f(z)(z − z0) = f−1 + f0(z − z0) + f1(z − z0)2 + · · ·

It is obvious that in the limit z → z0, the expression converges to the residue.

Proposition (Residue at poles of order N). The residue of a function at a pole of order N is
given by

Res(f, z0) =
1

(N − 1)!
lim
z→z0

dN−1

dzN−1

(
f(z)(z − z0)N

)
. (1.33)

Proof. It is easiest to work backwards. We consider f(z)(z − z0)N , as this would get rid of any
singularities in the limit. The Laurent series reads:

f(z)(z − z0)N = f−N + f−N+1(z − z0) + · · ·+ f−1(z − z0)N−1 + · · ·

Now, as we want the f−1 term, we can differentiate the expression (N − 1) times:

dN−1

dzN−1
f(z)(z − z0)N = f−1(N − 1)! + f0(z − z0)N ! + o(z − z0).

Taking the limit as z → z0 yields

lim
z→z0

dN−1

dzN−1
f(z)(z − z0)N = f−1(N − 1)!

and hence the proposition follows.
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1.8 The Calculus of Residues

Theorem (Residue theorem). Given a function f analytic on a domain D except at a finite
number of isolated singularities z1, z2, . . . , zn, the integral over a contour γ ∈ D oriented anti-
clockwise is ∮

γ

f(z) dz = 2πi
∑
k

Res(f, zk), (1.34)

where the sum is taken over all isolated singularities zk enclosed by γ.

Proof. We take cuts from γ such that we exclude any singularities by circling around them. We
denote this new contour as γ′, and the contour around the singularity at zi as γi. Note that
each γi is oriented clockwise. Then, the function f is analytic everywhere enclosed by γ′. By
Cauchy’s theorem, we have

0 =

∮
γ′
f(z) dz =

∮
γ

f(z) dz −
∑
k

∮
γk

f(z) dz ,

where the minus sign is due to the orientation of γk. This implies∮
γ

f(z) dz =
∑
k

∮
γk

f(z) dz .

Now, we consider only the integral around a single γk. We let γk = ∂Br(zk) for some r. Taking
the Laurent series around zk, we have∮

∂B

f(z) dz =

∮
∂B

∞∑
−∞

fn(z − zk)n dz

=

∞∑
−∞

fn

∮
∂B

(z − zk)n dz

=

∞∑
−∞

fn

∫ 2π

0

(reiϕ)nireiϕ dϕ

=

∞∑
−∞

irn+1fn

∫ 2π

0

e(n+1)iϕ dϕ

= 2πif−1.

The integral is non-zero only when n = −1, so the sum collapses. By taking the sum over all
singularities, we obtain the residue theorem.

1.8.1 Integration with residues

Let’s use the residue theorem to calculate real integrals.

Example. Consider the integral

I =

∫ ∞
0

dx

1 + x2

Instead of integrating along the real line, consider the integral∮
γ

dz

1 + z2

where we take the contour γ = γR + γ0 as

18
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×i

γR

R−R γ0

We notice that, since we have an even integral, we have

2I =

∫ ∞
−∞

dx

1 + x2
=

∫
γ0

dz

1 + z2

in the limit R→∞. Let’s look at the integral over γR as R→∞. We have∣∣∣∣∫
γR

dz

1 + z2

∣∣∣∣ ≤ πRmax
z∈γR

∣∣∣∣ 1

1 + z2

∣∣∣∣ = πR · O
(
R−2

)
= O

(
R−1

)
→ 0.

Hence, we conclude

I =
1

2

∮
γ

dz

1 + z2
= πi · Res(f, z = i)

since the only singularity we are enclosing is at z = i. This yields

I =
π

2
.

We see, from this example, that given an integral of the form
∫∞
−∞ f dx , we can choose

a contour shaped like a semi-circle, taking the limit as the radius approaches infinity. The
main issue given such contour is to determine whether the integral along the circular section
approaches zero. We require the following:

lim
R→∞

R ·max
θ

(f(Reiθ)) = 0.

There are a variety of different forms to consider. Let’s look at integrals with branch cuts.

Proposition. Given a function f that is not singular at z = 0, we have∫ ∞
0

f(x) dx = −
∑
ak

Res(f(z) log(z), ak) (1.35)

where ak are singularities in all of the complex plane. The condition for convergence is

lim
R→∞

R log(R) max
θ
|f(Reiθ)| = 0.

Proof. Consider the integral ∮
γ

f(z) log(z) dz ,

where the contour γ is the keyhole contour shaped as follows:
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γR

γε γ+

γ−

×a1

×a2

×a3

where we have used the positive real axis as a branch cut for the logarithm. Therefore, we define

log(z) := log(r) + iϕ, ϕ ∈ (0, 2π).

Now, our contour encloses all of the complex plane in the limit R → ∞ and ε → 0. Then, by
the residue theorem ∮

γ

f(z) log(z) dz = 2πi
∑
ak

Res(f(z) log(z), ak).

If R log(R) max(|f |)→ 0 as R →∞, the contribution from γR vanishes. If f is not singular at
z = 0, we have ε log(ε)→ 0 as ε→ 0. So, the integral over γ becomes∮

γ

f(z) log(z) dz =

∫
γ+

f(z) log(z) dz +

∫
γ−

f(z) log(z) dz

=

∫ ∞
0

f(x) log(x) dx+

∫ 0

∞
f(x)[log(x) + 2πi] dx

= −2πi

∫ ∞
0

f(x) dx = 2πi
∑
ak

Res(f(z) log(z), ak).

The result follows.

Proposition. ∫ 2π

0

f(reiϕ) dϕ = 2π
∑
|ak|<r

Res

(
f(z)

z
, ak

)
.

Proof. Let z = reiϕ, which implies dz = iz dϕ. Hence,∫ 2π

0

f(reiϕ) dϕ ≡
∫
∂Br(0)

f(z)

iz
dz = 2π

∑
|ak|<r

Res

(
f(z)

z
, ak

)
.
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Proposition. Given a function f(z), which is not singular at f(z) = 0, we have∫ ∞
0

f(x)
√
x dx = πi

∑
ak

Res(f(z)
√
z, ak).

given that
lim
R→∞

R
√
Rmax

θ
|f(Reiθ) = 0.|

Proof. Consider the same keyhole contour with a branch cut along the positive real axis. We
then have √

z :=
√
reiϕ/2, ϕ ∈ (0, 2π).

Since f is not singular at z = 0, the integral over γε vanishes. Similarly, the integral over γR
vanishes because of the condition stated above. Hence,

2πi
∑
ak

Res(f(z)
√
z, ak) =

∮
γ

f(z)
√
z dz =

∫
γ+

f(z)
√
z dz +

∫
γ−

f(z)
√
z dz

=

∫ ∞
0

f(x)
√
x dx+

∫ 0

∞
f(x)
√
xeiπ dx

= 2

∫ ∞
0

f(x)
√
x dx .

The result follows.

We can keep deriving new formulas using the keyhole contour with branch cuts in similar
manner. Let’s now look at the condition for convergence of a particular type of integral which
comes up all the time when doing Fourier transforms.

1.8.2 Jordan’s lemma

Proposition (Jordan’s lemma). Given an analytic function f which has a finite number of
singularities, if f(z)→ 0 as |z| → ∞ we have

lim
R→∞

∫
γR

f(z)eiλz dz = 0, ∀ λ > 0, (1.36)

and

lim
R→∞

∫
γ′R

f(z)eiλz dz = 0, ∀ λ < 0. (1.37)

The contours γR and γ′R are defined as semicircles of radius R above and below the real line
(excluding the real line) respectively.
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R−R

γR

γ′R

Proof. First, we note that in the interval θ ∈ [0, π/2], we have sin θ ≥ 2θ/π. (This is obvious if
you plot.) Now, consider∣∣∣∣∫

γR

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

f(Reiθ)eiλReiθ iReiθ dθ

∣∣∣∣
≤ Rmax

θ
|f |
∫ π

0

∣∣eiλR cos θ
∣∣ · ∣∣e−λR sin θ

∣∣ dθ
≤ 2Rmax

θ
|f |
∫ π/2

0

e−λR sin θ dθ

≤ 2Rmax
θ
|f |
∫ π/2

0

e−λR2θ/π dθ

=
π

λ
max
θ
|f |(1− e−λR) = O(max |f |).

Hence, if f → 0 as R→∞, the integral over γR vanishes. Same for γ′R if λ < 0.
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2 Fourier Transforms

2.1 The Dirac delta function

The Dirac delta function is not really a function as it is not defined everywhere in its domain. It
is instead a limiting process which is meaningful only when integrated. Let’s adopt the following
informal definition:

Definition (Delta function). The Dirac delta function, denoted δ(x) for x ∈ R, is defined by
the following property: ∫ ∞

−∞
δ(x)f(x) dx = f(0), ∀ f : R→ C, (2.1)

as long as f(0) is well defined.

Clearly, the purpose of the Dirac delta function is to collapse an integral. Analogous to the
Kronecker delta function which collapses discrete sums, clearly we must have δ(x) = 0 for all
x 6= 0 following from equation (2.1). However, δ(0) is not well defined. Let’s look at some of its
properties:

Proposition. The delta function can be expressed as the limit ε→ 0 of the function

h(x) =

{
1/ε, |x| < ε/2,

0 otherwise.

Proof. Let f : R→ R, and consider

lim
ε→0

∫ ∞
−∞

f(x)h(x) dx = lim
ε→0

∫ ε/2

ε/2

1

ε
f(x) dx .

Assuming f is sufficiently well behaved in the neighborhood of x = 0, we have

lim
ε→0

∫ ε/2

ε/2

1

ε
(f(0) +O(x)) dx = lim

ε→0

(
f(0) +

1

ε
O
(
ε2
))

= f(0).

This result holds for any f with continuous derivative at zero.

Proposition. The delta function is the derivative of the step (Heaviside) function,

δ(x) =
dΘ

dx
. (2.2)

Proof. Consider the integral,∫ ∞
−∞

Θ(x)f(x) dx =

∫ ∞
0

f(x) dx = lim
α→∞

F (α)− F (0),

where F ′ = f . We can rewrite the integral by integration by parts as follows:∫ ∞
−∞

Θ(x)f(x) dx = FΘ
∣∣∞
0
−
∫ ∞
−∞

Θ′F dx = lim
α→∞

F (α)−
∫ ∞
−∞

Θ′F dx

⇒
∫ ∞
−∞

Θ′F dx = F (0)

⇒ Θ′(x) = δ(x).
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Proposition. We can shift the delta function, such that for any a ∈ R we have∫ ∞
−∞

δ(x− a)f(x) dx = f(a). (2.3)

Proof. Consider the substitution u = x− a,∫ ∞
−∞

δ(x− a)f(x) dx =

∫ ∞
−∞

δ(u)f(u+ a) du = f(a)

by definition.

Proposition. We can scale the argument of δ(x) and obtain

δ(λx) =
1

|λ|
δ(x). (2.4)

Proof. Letting u = λx,∫ ∞
−∞

f(x)δ(λx) dx =

∫ ∞
−∞

du

|λ|
f(u/λ)δ(u) dx =

f(0)

|λ|
.

The results follows.

Corollary. The delta function is even.

Proof. Let λ = −1 and the results follows from the previous proposition.

Corollary. ∫ ∞
0

f(x)δ(x) dx =
f(0)

2
. (2.5)

Proof. As the delta function is even, we have

f(0)

2
=

1

2

∫ ∞
−∞

δ(x)f(x) dx =

∫ ∞
0

δ(x)f(x) dx .

Proposition. Consider a function ϕ : R → R, and define X = {x ∈ R |ϕ(x) = 0} such that ϕ
is continuous at all xn. Then, we have

δ(ϕ(x)) =
∑
xn∈X

δ(x− xn)

|ϕ′(xn)|
. (2.6)

Proof. Consider the following integral:∫ ∞
−∞

δ(ϕ(x))f(x) dx .

We split the integral up as a sum of integrals around the zeros of ϕ and take the limit as the
width of the ranges of integration approach to zero:∫ ∞

−∞
δ(ϕ(x))f(x) dx =

∑
xn∈X

lim
ε→0

∫ xn+ε

xn−ε
δ(ϕ(x))f(x) dx .

Now, we note that in the neighborhood of each xn, ϕ can be expressed as

ϕ(x) = ϕ(xn) + ϕ′(xn)(x− xn) + o(x− xn) = ϕ′(xn)(x− xn) + o(x− xn)
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where |xn − x| ≤ ε. The integral becomes∫ ∞
−∞

δ(ϕ(x))f(x) dx =
∑
xn∈X

lim
ε→0

∫ xn+ε

xn−ε
δ(ϕ′(xn)(x− xn) + o(x− xn))f(x) dx

=
∑
xn∈X

lim
ε→0

∫ xn+ε

xn−ε
δ(ϕ′(xn)(x− xn))f(x) dx

=
∑
xn∈X

f(x− xn)

|ϕ′(xn)|

⇒ δ(ϕ(x)) =
∑
xn∈X

δ(x− xn)

|ϕ′(xn)|
,

where the previous two propositions were used.

Proposition. The derivative of the delta function has the property∫ ∞
−∞

δ′(x)f(x) dx = −f ′(0). (2.7)

Proof. Simply integrate by parts.∫ ∞
−∞

δ′(x)f(x) dx = δ(x)f(x)
∣∣∞
−∞ −

∫ ∞
−∞

δ(x)f ′(x) dx = −f ′(0).

Proposition. The delta function is given by the integral∫ ∞
−∞

eikx dk = 2πδ(x).

Proof. Simply compute, in the limit Ω→∞, the integral∫ Ω

−Ω

eikx dk =
eikx

ix

∣∣∣∣Ω
−Ω

=
2 sin(Ωx)

x
.

Now, use the defining property of the delta function, given a function f : R → R and letting
u = Ωx,

lim
Ω→∞

∫ ∞
−∞

2 sin(Ωx)

x
f(x) dx = lim

Ω→∞

∫ ∞
−∞

2 sin(u)

u
f(u/Ω) du = f(0)

∫ ∞
−∞

2 sin(u)

u
du .

Evaluating the integral yields

f(0)

∫ ∞
−∞

2
sin(u)

u
du = 2πf(0).

Hence, the proposition holds.

2.2 Fourier transforms

We define the Fourier transform and Fourier integrals, and look at some of their key properties.
Then, we look at their applications to linear differential equations.
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Definition (Fourier transform). Given a function f : R → C, its Fourier transform, denoted

f̂(k), is defined as

F [f(x)](k) = f̂(k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx . (2.8)

Definition (Fourier integral). A function f(x) may be represented in terms of its Fourier

transform f̂(k), as

F−1[f̂(k)](x) = f(x) =

∫ ∞
−∞

f̂(k)eikx dk . (2.9)

The Fourier inversion theorem is an equivalent statement to the definition of the Fourier
integral.

Theorem (Fourier inversion theorem). Given a function f : R→ C such that f̂(k) exists, then

f(x) = F−1 [F [f(x)](k)] (x). (2.10)

Proof. Using the definition of Fourier transform, we write

F−1[f̂(k)](x) =
1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dy e−ikyeikxf(y)

=
1

2π

∫ ∞
−∞

dy f(y)

∫ ∞
−∞

dk eik(x−y).

From the properties of the delta function, we have

1

2π

∫ ∞
−∞

eik(x−y) dk = δ(x− y)

which implies ∫ ∞
−∞

dy f(y)

∫ ∞
−∞

dk eik(x−y) =

∫ ∞
−∞

dy δ(x− y)f(y) = f(x).

2.2.1 Properties of Fourier transforms

Proposition. Fourier transform is a linear operator.

Proof. Consider (af(x) + bg(x)) for some f, g : R → C and a, b ∈ C. The Fourier transform is
given by

F [af(x) + bg(x)](k) =
1

2π

∫ ∞
−∞

(af(x) + bg(x))e−ikx dx

=
a

2π

∫ ∞
−∞

f(x)e−ikx dx+
b

2π

∫ ∞
−∞

g(x)e−ikx dx

= af̂(k) + bĝ(k).

Proposition. Given g(x) = f(λx) for some λ ∈ R \ {0}, we have ĝ(k) = f̂(k/λ)/|λ|.

Proof. Let u = λx,

ĝ(k) =
1

2π

∫ ∞
−∞

f(λx)e−ikx dx =
1

2π

∫ ∞
−∞

f(u)e−iu(k/λ) 1

|λ|
du =

f̂(k/λ)

|λ|
.
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Proposition. F [f(−x)](k) = f̂(−k).

Proof. Let λ = −1 in the previous proposition and the result follows.

Proposition. Given g(x) = f(x− a) for some a ∈ R, ĝ(k) = e−ikaf̂(k).

Proof. Let u = x− a,

ĝ(k) =
1

2π

∫ ∞
−∞

f(x− a)e−ikx dx

=
1

2π

∫ ∞
−∞

f(u)e−i(u+a)k du

=
1

2π
e−ika

∫ ∞
−∞

f(u)e−iku du

= e−ikaf̂(k).

Proposition. Given g(x) = eipxf(x) for some p ∈ R, ĝ(k) = f̂(k − p).

Proof.

ĝ(k) =
1

2π

∫ ∞
−∞

f(x)eipxe−ikx dx =
1

2π

∫ ∞
−∞

f(x)e−ix(k−p) dx = f̂(k − p).

Proposition. Given g(x) = f ′(x), we have ĝ(k) = ikf̂(k).

Proof. Simply integrate by parts.

ĝ(k) =
1

2π

∫ ∞
−∞

f ′(x)e−ikx dx

=
1

2π

{
f(x)e−ikx

∣∣∞
−∞ +

∫ ∞
−∞

ike−ikxf(x) dx

}
= ikf̂(k),

assuming that lim|x|→∞ f(x) = 0.

Corollary. Given g(x) = f (n)(x), ĝ(k) = (ik)nf̂ .

Proof. By induction from previous result. There is a condition that f (m) → 0 as x→ ±∞, for
all m < n.

Theorem (Plancherel’s theorem). For a given f : R→ C, provided f̂(k) exists, we have∫ ∞
−∞
|f(x)|2 dx = 2π

∫ ∞
−∞
|f̂(k)|2 dk . (2.11)

27



2.2 Fourier transforms 2 FOURIER TRANSFORMS

Proof. We write f(x) as a Fourier integral (or f̂(k) as a Fourier transform, it doesn’t matter),∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞

dx

∣∣∣∣∫ ∞
−∞

dk f̂eikx
∣∣∣∣2

=

∫ ∞
−∞

dx

∫ ∞
−∞

dk1 f̂(k1)eik1x
∫ ∞
−∞

dk2 e−ik2xf̂∗(k2)

=

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2 f̂(k1)f̂∗(k2)

∫ ∞
−∞

dx eix(k1−k2)

=

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2 2πδ(k1 − k2)f̂(k1)f̂∗(k2)

= 2π

∫ ∞
−∞
|f̂(k)|2 dk .

Corollary. Given two function f, g : R→ C, we have∫ ∞
−∞

f(x)g∗(x) dx = 2π

∫ ∞
−∞

f̂(k)ĝ∗(k) dk . (2.12)

Proof. Follows from Plancherel’s theorem.

Definition (Orthogonal transformation). An orthogonal transformation over a vector space,
T : V → V , is a linear transformation that preserves length and angles between elements of V .

We can think of the set of all square integrable functions f : R → C with the following
definition for an inner product:

(f, g) =

∫ ∞
−∞

f(x)g∗(x) dx (2.13)

as a vector space.

Corollary. Up to a factor of 2π (which doesn’t matter), Fourier transforms are orthogonal
transformations. We have, for all square integrable functions f and g,

(f, g) = 0 ⇔ (f̂ , ĝ) = 0. (2.14)

Note (Differentiation and convergence). Differentiation is a sharpening operator. Even if f is
square integrable, f ′ is not necessarily. This is easily seen from Plancherel’s theorem:∫ ∞

−∞
|f ′(x)|2 dk = 2π

∫ ∞
−∞

k2|f̂(k)|2 dk .

The factor of k2 slows down convergence or makes the integral diverge. This sharpening is where
the extra conditions on the Fourier transforms of derivatives of functions come from.

Proposition (Bound on f̂(k)). If there exists N ∈ R such that∫ ∞
−∞
|f(x)| dx ≤ N,

we have

|f̂(k)| ≤ N

2π
. (2.15)
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Proof. From the definition of Fourier transform, we have

f̂(k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx ≤ 1

2π

∫ ∞
−∞
|f(x)||e−ikx| dx =

1

2π

∫ ∞
−∞
|f(x)| dx .

The results follows.

Proposition. Given N ∈ R,∫ ∞
−∞
|f (n)(x)| dx ≤ N ⇒ f̂(k) ≤ N

2π|k|2
. (2.16)

Proof. Define g(x) = f (n)(x), so we have ĝ(k) = (ik)nf̂(k). So, we have

f̂(k) =
ĝ(k)

(ik)n
=

1

2π(ik)n

∫ ∞
−∞

f (n)(x)e−ikx dx ≤ 1

2π|k|n

∫ ∞
−∞
|f (n)(x)| dx =

N

2π|k|2
.

2.2.2 Applications to linear differential equations

The general form of the equations we are interested in is

any
(n)(x) + an−1y

(n−1)(x) + . . .+ a0y(x) = f(x), (2.17)

where f(x) is known and ai are constants.
We can take the Fourier transform with respect to x,

(
an(ik)n + an−1(ik)n−1 + . . .+ a0

)
ŷ(k) = f̂(k) ⇒ ŷ(k) =

f̂(k)

P (ik)
, (2.18)

where P (ik) is the characteristic polynomial. After taking the inverse transform, we would have
solved the differential equation! If only life were that simple... There are some major issues
with this. We only acquired a single solution, whereas we would expect to specify n initial or
boundary conditions. What happened?

We assumed that the Fourier transform of f(x) and, more importantly, y(x) exist. Given
such constraint on y, it turns out we have a unique solution. The solution is given by

y(x) =

∫ ∞
−∞

f̂(k)

P (ik)
eikx dk , (2.19)

where @ k ∈ R such that P (ik) = 0. This means P (λ) has no purely imaginary zeros.

Theorem (Convolution theorem). The Fourier transform of the convolution of two functions
is the product of their Fourier transforms (up to a factor of 2π).

Proof. Define, for some f̂ and ĝ, h(x) such that

ĥ(k) = 2πf̂(k)ĝ(k).

Then, h(x) can be expressed as the Fourier integral:

h(x) = 2π

∫ ∞
−∞

f̂(k)ĝ(k)eikx dk

=

∫ ∞
−∞

dk

∫ ∞
−∞

dy f(y)ĝ(k)eik(x−y),
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letting u = x− y, we obtain∫ ∞
−∞

dk

∫ ∞
−∞

dy f(y)ĝ(k)eik(x−y) =

∫ ∞
−∞

du f(x− u)

∫ ∞
−∞

dk ĝ(k)eiku

=

∫ ∞
−∞

du f(x− u)g(u)

= f ∗ g.

Hence, the theorem holds.

We can now look at the solution to the differential equation as a convolution.

ŷ(k) = f̂(k) · 1

P (ik)

⇒ y(k) = f ∗G

where Ĝ(k) = 1/(2πP (ik)). So,

G(x) =
1

2π

∫ ∞
−∞

eikx dk

P (ik)
(2.20)

is the Green’s function. The solution is then given by

y(x) =

∫ ∞
−∞

f(x)G(x− u) du . (2.21)

The factor of 2π comes from the convolution. We could get rid of it by changing our definitions
of Fourier transforms and Fourier integrals, or by including it in the definition of convolution
but it really doesn’t matter.

2.2.3 Green’s functions for ODE’s

But what really is a Green’s function?

Definition (Green’s function). The Green’s function, G(x), of a given ODE is a solution to
the equation

any
(n)(x) + an−1y

(n−1)(x) + . . .+ a0y(x) = L[y(x)] = δ(x)

where L denotes the differential operator.

We can check the equivalence of this definition with equation (2.21). We have, from the
definition of the Green’s function,

L [G(x)] = δ(x)

⇒ δ(x− u) = L [G(x− u)] .

By the properties of the delta function, we can express any f(x) as

f(x) =

∫ ∞
−∞

f(u)δ(x− u) du .

Combining the two, for an ODE of the form L[y] = f yields

f(x) =

∫ ∞
−∞

f(u)δ(x− u) du

=

∫ ∞
−∞

f(u)L [G(x− u)] du = L[y(x)].

Since the operator L acts on x, this expression is equivalent to (2.21).
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Example. Consider a square integrable solution to the equation

y′(x) + y(x) = δ(x).

The solution will be the Green’s function for this ODE. Let’s solve it normally and compare
with (2.20).

When x 6= 0, we have
y′(x) + y(x) = 0,

which implies

y(x) =

{
Ae−x x > 0,

Be−x x < 0.

Now, to find the coefficients A,B ∈ R, we integrate in the neighborhood of x = 0:∫ ε

−ε
y′(x) dx =

∫ ε

−ε
δ(x)− y(x) dx ⇒ y(0+)− y(0−) = 1

in the limit ε→ 0. So, we have A = B + 1
As we are interested in square integrable solutions, we must have B = 0. Therefore, A = 1

and the solution is

y(x) = G(x) =

{
e−x x > 0,

0 x < 0.

Now, let’s solve by (2.20). We have P (ik) = ik + 1. There is a single, first order pole at k = i.
The solution is

G(x) =

{
i
∑

Im>0 Res(eikx/(ik + 1), kj) x > 0,

−i
∑

Im<0 Res(eikx/(ik + 1), kj) x < 0.

Since there are no poles for Im < 0, we have G(x) for x < 0. The residue at k = i gives

G(x) =

{
e−x x > 0,

0 x < 0.

So, the two results agree, as expected.

2.2.4 Simple zeros of characteristic polynomial

What happens if P (ik) = 0 for some k ∈ R? In this case, as we will show, there will no longer
be a unique, square integrable solution but we can still make sense out of it.

We will only consider simple zeros of P . In this case, we know that the Fourier integral for
y(x) will not converge in the usual sense. This is why define the Cauchy principal value.

Definition (Cauchy principal value). For a function f(x) with a single singularity at an internal
point s of an interval [a, b], the principal value is defined by the limit

P
∫ b

a

f(x) dx := lim
ε→0+

[∫ s−ε

a

f(x) dx +

∫ b

s+ε

f(x) dx

]
.

Corollary. Let h(x) we well-defined for all x. Then, for all even functions g(x), we have

P
∫ ∞
−∞

(
h(x) +

g(x)

x

)
dx =

∫ ∞
−∞

h(x) dx .

So, if we have an even function with an odd singularity, we just ignore it.
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Let’s proceed as we would if P (ik) was non-singular and see when we arrive at inconsistencies
(hint - very soon). Taking the Fourier transform, we get

P (ik)ŷ(k) = f̂(k).

Let P (ikj) = 0 for some real {kj}. Then, we have

P (ikj)ŷ(kj) = 0 6= f̂(kj)

as there is no particular reason f̂ would be zero. The function f is completely independent of
our characteristic polynomial. So, we have arrived at an inconsistency. In order to resolve this,
we must go to the homogeneous equation:

any
(n) + . . .+ a0y = 0.

We know, since P (ikj) = 0, that a solution of the homogeneous equation is

y(x) = cje
ikjx.

Hence, our differential equation becomes:

∑
n

an
dn

dxn

y(x) +
∑
j

cje
ikjx

 = f(x).

Taking the Fourier transform yields

P (ik)ŷ(k) +
∑
j

P (ikj)cjδ(k − kj) = P (ik)ŷ(k) +
∑
j

P (ik)cjδ(k − kj) = f̂(k),

where for the second term we have P (ik) = P (ikj) because of the delta functions. A factor of
2π is implicitly included in cj . So we have

ŷ(k) =
f̂(k)

P (ik)
+
∑
j

cjδ(k − kj). (2.22)

The constants cj are arbitrary, so we don’t need to worry about the minus sign. Now, we see
that given m singularities, we have to choose m constants. We lose uniqueness, and our solutions
are no longer square integrable. When we take the Fourier integral, we simply use the principal
values. (I genuinely don’t understand why any of this works at all. Everything should diverge...
but doesn’t.)
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3 Calculus of Variations

Often in physics, we are interested in quantities that depend on the behaviours of functions over
some interval. These quantities are called functionals.

3.1 Functionals

Definition (Functional). A functional is a function that assigns a real number to a function
y : R→ R. We denote functionals by square brackets: F [y] ∈ R.

Note (Assigning numbers to functions.). Generally, assigning a real number that depends on
a function is done by integration at one point or another. (Apart from evaluating the functions
at certain points, nothing else comes to mind.)

Example. Here are some examples of functionals:

• Length of a curve:

F [y] =

∫ x1

x0

√
1 + y′2 dx .

• The time it takes to traverse from some point to another, given a velocity field v(x, y).
(This is an example of a functional that depends on multiple functions.)

T [x, y] =

∫ s1

s0

√
x′2 + y′2

v(x, y)
dx .

• As a more general example, let F (x1, x2, x3) be a continuous function of three variables.
Then the expression

J [y] =

∫ b

a

F (y, y′, x) dx , (3.1)

where y(x) ranges over the set of all continuously differentiable functions in the interval
x ∈ [a, b] is a functional.

We will mainly consider functionals of the form (3.1). These functionals have a localization
property, meaning that if we divide up y into sections and calculate J [y] for each section, the
sum of the values equals the functional for the entire curve.

Definition (Localization property). A functional J [y] is said to be local if, for any y in the
domain of J we have

J [y] =
∑
i

Ji [yi] ,

where each yi denotes a section of the curve y. This can be generalized to functionals of multiple
functions.

We are interested in “stationary functions” of functionals of the form (3.1). This seems
like a very difficult problem - and it is. Instead of points at which the gradient of a function is
zero, we are interested in functions for which the gradient of a functional is zero. One way of
approaching this problem initially is the method of finite differences.
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3.1.1 Method of finite differences

One of the most natural ways to approach the problem of finding stationary functions of fun-
tionals is to reduce it to a problem of classical analysis - i.e. finding stationary points.

Consider a functional of the form (3.1), with the condition y(a) = ya and y(b) = yb. We
start by dividing up the interval x ∈ [a, b] into n+ 1 sections using the points

x0 = a, x1, x2, . . . , xn, xn+1 = b.

Now we replace (approximate) the function y(x) by a set of lines with endpoints

(x0, ya), (x1, y(x1)), . . . (xn+1, yb).

Hence, we approximate the functional J [y] by the sum

J [y] ≈ J(y1, y2, . . . , yn) =

n+1∑
i=0

F (yi,
yi − yi−1

h
, xi)h

where yi = y(xi) and h = xi − xi−1.
Notice now that J is no longer a functional, but a function of n variables. To find stationary

functions of J [y], we find n stationary points of J(y1, . . . , yn). In the limit n → ∞, we obtain
the function y(x) for which J [y] is stationary.

Although this is an intuitive approach, it is not practical. We would rather not find an infinite
number of stationary points. I don’t even know how any problem can be solved by this method,
but apparently Euler made it work.

3.1.2 Function spaces

Just as we would use n-dimensional Euclidian space to represent the arguments of functions of
n variables, it is useful to consider a similar structure when dealing with functionals.

Definition (Function space). A function space is a space whose elements are functions.

Note. Sometimes, the definition of a function space is given as a vector space, which implies
the definition of a dot product between two functions. We can be more general.

Notice that the definition is very broad, and for most problems we need to specify the classes
of functions we are interested in. For example, if we are working with a functional of the form

J [y] =

∫ b

a

F (y, y′, x) dx ,

we would be interested all continuous functions f with continuous first derivatives on the interval
[a, b].

For our purposes, we will be interested in normed linear spaces. In a normed space, we can
think about the distance between two elements x, y by considering |x− y|. We will consider the
following:

• The space C (a, b), consisting of all continuous functions y(x) in the interval [a, b]. Addition
of functions and multiplication by real numbers are defined as usual, and the norm is
defined as

|y| = max
x∈[a,b]

|y(x)|.

Two functions are regarded as close if one function lies within a strip of a small width
around the other.
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• The space Dn(a, b), consisting of all continuous functions y(x) defined on the interval [a, b]
with continuous derivatives up to and including order n for some n ∈ Z. Addition and
multiplication by real numbers are defined as usual. The norm is defined as

|y| =
n∑
i=0

max
x∈[a,b]

|y(i)(x)|.

Therefore, two functions in Dn are regarded as close together if the values of the functions
themselves and of all their derivatives up to order n inclusive are close together.

Now, we are in a position to talk about continuity of functionals.

Definition (Functional continuity at a point). The functional J [y], defined over a normed
linear space L , is said to be continuous at point y0 ∈ L if for any ε > 0, there exists δ > 0
such that

|J [y]− J [y0] | < ε,

for all y ∈ L where |y − y0| < δ.

Note. In the definition of norm in Dn, had we not included contributions from the derivatives,
we could not have any continuous functionals that depend on derivatives of functions. This is
obvious.

3.1.3 Variation of functionals and the functional derivative

The variation of a functional is analogous to the differential of a function. We will use variations
to find stationary points. First, we give some definitions.

Definition (Continuous linear functional). Given a normed linear space L and a functional
ϕ [h] defined over L , ϕ [h] is said to be a continuous linear functional if

1. ϕ [αh] = αϕ [h] for all h ∈ L and any α ∈ R.

2. ϕ[h1 + h2] = ϕ[h1] + ϕ[h2] for any h1, h2 ∈ L .

3. ϕ[h] is continuous for all h ∈ L .

Example. The integral

ϕ[h] =

∫ b

a

{
α0(x)h(x) + . . .+ an(x)h(n)(x)

}
dx

where αi(x) ∈ C (a, b), defines a linear continuous functional in Dn(a, b).

Definition (First variation). Given a functional J defined over Dn, let y, h ∈ Dn. If, for a
fixed y, there exists a continuous linear functional, δJ [h] such that

∆J [h] ≡ J [y + h]− J [y] = δJ [h] + o(max |h|), (3.2)

then δJ is the first variation of J at y. Considering an increment of the form εh, we can Taylor
expand J about ε = 0 and obtain

J [y + εh] = J [y] + ε
dJ [y + εh]

dε

∣∣∣∣
ε=0

+ o(ε),

from which it becomes clear that the first variation has the form

δJ [h] =
dJ [y + εh]

dε

∣∣∣∣
ε=0

. (3.3)
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Now, we are in a position to talk about the derivative of a functional at a given point x0.
There are different ways of approaching this definition intuitively, we will go over two of those.

Definition (Functional derivative 1). Let J be a functional defined over Dn and y ∈ Dn.
Suppose we increment y(x) by a function h(x) defined as

h(x) =

{
h0 x0 − ε < x < x0 + ε,

0 otherwise.

We define ∆σ as the area between y + h and h, (or, equivalently, the area between h and the x
axis). If the limit

δJ

δy

∣∣∣∣
x0

:= lim
ε→0

J [y + εh]− J [y]

∆σ(ε)
(3.4)

exists, it is called the functional derivative of J [y] at point x = x0.

In the limit ε→ 0, ∆σ → h(x0) dx and rearranging gives

δJ

δy

∣∣∣∣
x0

h(x0) dx = lim
ε→0

J [y + εh]− J [y]

ε
= δJ [h].

This leads us to our second definition.

Definition (Functional derivative 2). The functional derivative of J [y(x)] is a function of x
such that the variation δJ [h] is given by

δJ [h] =

∫
δJ

δy
(x)h(x) dx . (3.5)

We can think of this as a generalization of (3.4) for any increment function h(x).

3.2 Euler-Lagrange Equation

We consider functionals of the form (3.1). We want to find stationary points, so let’s calculate
the first variation.

We first define some boundary conditions, for all y ∈ D1 we require y(a) = ya and y(b) = yb
for some ya, yb ∈ R. This implies that our increment h(x) satisfy h(a) = h(b) = 0. We require
that for all h ∈ D1,

δJ [h] =

∫ b

a

dF (y + εh, y′ + εh′, x)

dε

∣∣∣∣
ε=0

dx

=

∫ b

a

∂yF (y, y′, x)h+ ∂y′F (y, y′, x)h′ dx ≡ 0.

Now, we integrate the second term by parts to obtain∫ b

a

∂y′F (y, y′, x)h′ dx = [h∂y′F ]
b
a −

∫ b

a

d

dx
(∂y′F )hdx .

Due to our boundary conditions, the first terms is identically zero. Hence, we obtain

δJ [h] =

∫ b

a

h

{
∂yF (y, y′, x)− d

dx
(∂y′F )

}
dx ≡ 0, (3.6)

⇒ δJ

δy
(x) =

∂F

∂y
− d

dx

(
∂F

∂y′

)
≡ 0. (3.7)
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This is the Euler-Lagrange equation. Notice that (3.6) is the statement that the first variation
is identically zero, which implies that the functional derivative given by (3.7) is identically zero.

This allows us to easily generalize to functionals of n functions, in which case the Euler-
Lagrange equation becomes

∂F

∂yi
− d

dx

(
∂F

∂y′i

)
= 0 ∀ i.

3.2.1 First integrals

In general, the Euler-Lagrange equation gives us a second order differential equation to solve.
However, under some special cases the equation reduces to a first order one, which simplifies
the problem considerably. We look at those special cases.

1. If the integrand does not depend on y, so

J [y] =

∫ b

a

F (y′, x) dx ,

the Euler-Lagrange equation becomes

d

dx

(
∂F

∂y′

)
= 0

which gives us the first integral
∂F

∂y′
= c

for some c ∈ R.

2. If the integrand doesn’t depend on x,

d

dx

(
∂F

∂y′

)
= y′′∂2

y′y′F + y′∂2
yy′F

The Euler-Lagrange equation reduces to

d

dx
(F − y′∂y′F ) = 0

which gives us the first integral
F − y∂y′F = c.

3. If F does not depend on y′, we simply solve for y:

∂yF = 0.

In physics, such simplifications correspond to conserved quantities. In the Lagrangian formalism,
the independent variable is time. So, if the time derivative of any expression is identically zero,
as is the case with cases 1 and 2, we have a conserved quantity.

Example (Geodesics of a plane). What is the shortest curve C joining two points A and B on
a plane?
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x

y

A

B

xa

ya

xb

yb

C

We parameterise the curve so that r(t) = (x(t), y(t)) for t ∈ [0, 1]. The boundary conditions are
r(0) = (xa, ya) and r(1) = (xb, yb). We want to minimize∫ 1

0

dt
√
ẋ2 + ẏ2, so F =

√
ẋ2 + ẏ2.

By the Euler-Lagrange equation,

d

dt

(
∂F

∂ẋ

)
=

d

dt

(
ẋ√
ẋ+ ẏ2

)
= 0.

We have a first integral. Integrating yields

ẋ√
ẋ2 + ẏ2

= c1,
ẏ√

ẋ2 + ẏ2
= c2.

This implies

ẏ =
c2
c1
ẋ,

which is the equation for a straight line. We set the constants such that the boundary conditions
are matched.

Example (Minimum surface of revolution). Among all curves joining two points A = (xa, ya)
and B = (xb, yb), find the one which minimizes the surface area when rotated about the x-axis.

y

x

A

B
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We would like to minimize

S = 2π

∫ xb

xa

y

√
1 + y′2 dx .

Notice that our integrand is independent of x, so we have the first integral:

d

dx
(F − y′∂y′F ) = 0

⇒ y

√
1 + y′2 − yy′

2√
1 + y′2

= c1

for some c1 ∈ R. Solving for y′ yields

dy

dx
=

√
y2 − c21
c21

.

Now, we separate variables and integrate:

x+ c2 = c1

∫
dy√
y2 − c21

⇒ y = c1 cosh

(
x+ c2
c1

)
.

This describes catenary. The surface of revolution generated by rotating a catenary about the
x−axis is a catenoid. The coefficients are found by solving for the boundary conditions.

3.2.2 Coordinate invariance

Suppose we use a different coordinate system such that we have x = x(u, v) and y = y(u, v)
with the condition ∣∣∣∣∂ux ∂vx

∂uy ∂vy

∣∣∣∣ 6= 0.

This requirement is simply the statement that the span of our new coordinates is not less than
the span of the previous.

We now have the curve y(x) correspond to some v(u). Transforming our functional, we have

J [y] =

∫ b

a

F (y, y′, x) dx

=

∫ b∗

a∗
F

(
y(u, v),

∂uy + v′∂vy

∂ux+ v′∂vx
, x(u, v)

)
(∂ux+ v′∂vx) du

≡
∫ b∗

a∗
F ∗(v, v′, u) du = J∗[v].

where we have defined

F ∗(v, v′, u) ≡ F
(
y(u, v),

∂uy + v′∂vy

∂ux+ v′∂vx
, x(u, v)

)
(∂ux+ v′∂vx).

We would like to show that

d

dx

(
∂F

∂y′

)
=
∂F

∂y
⇐⇒ d

du

(
∂F ∗

∂v′

)
=
∂F ∗

∂v
. (3.8)
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Consider the functional derivatives for some y(x), h(x) and a corresponding v(u), η(u):

δJ

δy
= lim
ε→0

J [y + εh]− J [y]

∆σ(ε)
= lim
ε→0

J∗[v + εη]− J∗[v]

∆σ∗(ε)

(∣∣∣∣∂ux ∂vx
∂uy ∂vy

∣∣∣∣)−1

⇒ δJ

δy
=
δJ∗

δv

(∣∣∣∣∂ux ∂vx
∂uy ∂vy

∣∣∣∣)−1

Since we required the Jacobian to be non-zero, (3.8) follows.
Whether or not a curve is stationary with respect to a functional of the form (3.1) is inde-

pendent of the coordinate system.

3.3 Constrained Variations

What happens if we require the function y to satisfy additional conditions? We will be interested
in functionals of the form (3.1), with an additional constraint by fixing the value of another
functional of the form

K[y] =

∫ b

a

G(y, y′, x) dx = l.

for some function G and l ∈ R. First, let’s try to get an intuitive picture of the situation by
considering functions defined over Rn.

3.3.1 Lagrange multipliers

Consider a scalar field f : Rn → R. If we wanted to find a stationary point x0 ∈ Rn, we would
solve

df = ∇f · dx ≡ 0

⇒ ∇f = 0,

as the differential has to be zero for all displacements dx . This would be unconstrained, as we
considered all values of x. Suppose now we add a constraint such that we only consider x ∈ Rn
which satisfy g(x) = 0 for some g : Rn → R. Notice that this removes one degree of freedom,
and would correspond to a surface in R3 or a curve in R2.

Now, our displacement dx must lie on the “surface” defined by g(x). As we still want df
to be identically zero, we require ∇f to be perpendicular to the surface. Since we know ∇g(x)
is perpendicular to g(x) = 0, we require

∇f = λ∇g, g(x) = 0.

This can be reduced to an unconstrained problem by considering a function of the form

φ(x, λ) ≡ f(x)− λg(x).

Minimizing with respect to x gives the first condition, and λ gives the second.
Notice how this is almost identical to the problem we considered with functionals - we have

the same type of constraint!

3.3.2 Generalization to functionals

Theorem. Given the functional

J [y] =

∫ b

a

F (y, y′, x) dx ,
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with constraints

y(a) = ya, y(b) = yb, K[y] =

∫ b

a

G(y, y′, x) dx = l ∈ R,

where K[y] is another functional, let J [y] have a stationary point for y = y(x) subject to the
constraints. Then, if y(x) is not a stationary point of K[y], there exists λ ∈ R such that y(x) is
a stationary point of the functional ∫ b

a

(F + λG) dx .

Proof. Let y = y(x) be a stationary point of J subject to the constraints. We choose two points
x1, x2 ∈ [a, b], where x2 will remain fixed and x1 will be arbitrary. Suppose we increment y(x)
by h1(x) + h2(x) where h1 is nonzero only in the neighborhood of x1, and h2 is nonzero only in
the neighborhood of x2. The first variation of J [y] is

δJ [h1 + h2] =
δJ

δy

∣∣∣∣
x1

σ1 +
δJ

δy

∣∣∣∣
x2

σ2, (3.9)

where

σ1 =

∫ b

a

h1(x) dx , σ2 =

∫ b

a

h2(x) dx .

We require that the varied curve y∗ = y + h1 + h2 satisfy K[y∗] = K[y]. The first variation of
K is

δK[h1, h2] =
δK

δy

∣∣∣∣
x1

σ1 +
δK

δy

∣∣∣∣
x2

= 0. (3.10)

Now, we choose x2 to be a point such that

δK

δy

∣∣∣∣
x2

6= 0,

which exists since we have assumed y(x) is not a stationary point of K. Now, we can write the
condition (3.10) as

σ2 = −σ1


δK

δy

∣∣∣∣
x1

δK

δy

∣∣∣∣
x2

 .

Now, we set

λ = −

δJ

δy

∣∣∣∣
x2

δK

δy

∣∣∣∣
x2

.

Substituting into (3.9) yields

δJ [h1] =

{
δJ

δy

∣∣∣∣
x1

+ λ
δK

δy

∣∣∣∣
x1

}
σ1,

where now our first variation is only a functional of h1. The constraint has removed one degree
of freedom. As we require the first variation to be identically zero (i.e. zero for all h1), we have

δJ

δy
+ λ

δK

δy
=
∂F

∂y
− d

dx

(
∂F

∂y′

)
+ λ

{
∂G

∂y
− d

dx

(
∂G

∂y′

)}
= 0.

This completes the proof.
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Example (Isoperimetric problem). What closed curve of fixed length l encloses the maximum
area?

We parameterize the curve by r(t) = (x(t), y(t)), for t ∈ [0, 1]. So,

A[y] =

∫ 1

0

yẋdt , L[y] =

∫ 1

0

√
ẋ2 + ẏ2 dt = l.

Hence, we maximize the functional

A[y] + λL[y] =

∫ 1

0

yẋ+ λ
√
ẋ2 + ẏ2 dt .

We obtain equations for maximization with respect to x and y:

ẋ = λ
d

dt

(
ẏ√

ẋ2 + ẏ2

)
,

d

dt

(
y +

λẋ√
ẋ2 + ẏ2

)
= 0.

Integrating with respect to t yields

x+ c1 =
λẏ√
ẋ2 + ẏ2

, −y − c2 =
λẋ√
ẋ2 + ẏ2

for some constants c1, c2. This implies

ẋ(x+ c1) + ẏ(y + c2) = 0,

⇒ (x+ c1)2

2
+

(y + c2)2

2
= c3.

This is a circle of radius
√
c3, centered at (−c1,−c2). The constants can be found by the

boundary conditions, as we have not stated any restrictions on the position of the curve c1 and
c2 can be arbitrary.

3.4 Lagrangian Mechanics

We will look at how calculus of variations can be used to reformulate classical mechanics.

3.4.1 Generalized Coordinates

We start by defining a configuration space. This is a vector space containing generalized co-
ordinates {q1, q2, . . . , qn} that specify the configuration of the entire system. A vector on the
configuration space contains all the information about a given system. In classical mechanics,
this information is the positions of the particles.

We denote the configuration space by C. As a system evolves in time, it traces out a curve
in C, and we would like to know which particular curve is traversed.

3.4.2 The Principle of Stationary Action

Definition (Lagrangian). The Lagrangian is defined to be a function of the positions q, and
velocities q̇ of all particles in the system, given by

L(q, q̇, t) = T (q̇)− V (q, t) (3.11)

where T = 1
2

∑
imi(q̇i)

2 is the kinetic energy and V is the potential energy (which may be
time-dependent). 1

1We denote the set of generalized coordinates q1, q2, . . . , qn by q, and similarly we denote the generalized
velocities by q̇.
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3.4 Lagrangian Mechanics 3 CALCULUS OF VARIATIONS

We consider all curves in C with fixed endpoints

q(ti) = qinitial, q(tf ) = qfinal.

Of all the possible paths, only one path is taken by the system. We assign a value to each path
by defining the action functional.

Definition (Action). The action is a functional of the generalized coordinates, given by

S[q] =

∫ tf

ti

L(q, q̇, t) dt . (3.12)

We can now state the principle of stationary action:

Law (Principle of stationary action). The path traversed by the system in the configuration
space C is a stationary point of the action S.

It is easy to show that we can recover Newton’s law from (3.12). The principle of stationary
action implies that our Lagrangian is a solution of the Euler-Lagrange equation. Consider a
system of one particle, and let the generalized coordinates be Cartesian coordinates {x, y, z}.
The Lagrangian is

L(q, q̇, t) =
1

2
m(ẋ2 + ẏ2 + ż2)− V (x, y, z, t).

The Euler Lagrange equation gives

m(ẍ+ ÿ + z̈) = −∇V.

The right hand side is the force exerted on the particle, and so we recover Newton’s law.

Note. This can be done in more generality, since assuming Cartesian coordinates is an arbitrary
decision. We can, instead, define the generalized momentum.

Definition (Generalized momentum). The generalized momentum corresponding to a set of
generalized coordinates q = q1, . . . , qn is defined as the partial derivative of the Lagrangian with
respect to the generalized velocity q̇:

pk :=
∂L

∂q̇k
. (3.13)

With this definition, we can recover Newton’s law for any coordinate system. This is not obvious
due to fictitious forces.

3.4.3 Change of coordinates

We have already proved that the Euler-Lagrange equation is coordinate invariant in section 3.2.2.
Here, we present another proof keeping the concept of generalized coordinates in mind.

Consider a set of generalized coordinates

xi : (x1, x2, . . . , xN ),

and assume the Euler Lagrange equations hold in this set of coordinates, such that

d

dt

(
∂L

∂ẋi

)
=
∂L

∂xi
∀ i. (3.14)

Now, consider a new set of coordinates qi, related to xi by a transformation of the form:

qi = qi(x1, x2, . . . , xN ; t). (3.15)

We are interested in “nice” transformations that we can invert, so we have

xi = xi(q1, q2, . . . , qN ; t). (3.16)
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Proposition (Coordinate invariance). If equation (3.14) holds for the set of coordinates xi,
and if xi and qi are related by (3.16), then the Euler Lagrange equation also holds for qi. That
is,

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
∀ i.

Proof. The Lagrangian in the transformed coordinates q is

L′(q, q̇, t) = L(x(q, t), ẋ(q, q̇, t), t),

where the prime indicates that L′ is a different function than L. We would like to find an
expression for the functional derivative in the q coordinates. First look at:

∂L′

∂qi
=

∂L

∂xj
∂xj

∂qi
+
∂L

∂ẋj
∂ẋj

∂qi
.

From (3.16), it follows that

ẋj =
dẋj

dt
=
∂xj

∂qk
q̇k +

∂xj

∂t
⇒ ∂ẋj

∂qi
=

∂2xj

∂qi∂qk
q̇k +

∂2xj

∂qi∂t
.

So, we have
∂L′

∂qi
=

∂L

∂xj
∂xj

∂qi
+
∂L

∂ẋj

(
∂2xj

∂qi∂qk
q̇k +

∂2xj

∂qi∂t

)
.

Now, look at:
∂L′

∂q̇i
=

∂L

∂ẋj
∂ẋj

∂q̇i
=

∂L

∂ẋj
∂

∂q̇i

(
∂xj

∂qk
q̇k +

∂xj

∂t

)
=

∂L

∂ẋj
∂xj

∂qi
.

Then, it follows that

d

dt

[
∂L′

∂q̇i

]
=

d

dt

[
∂L

∂ẋj

]
∂xj

∂qi
+
∂L

∂ẋj

[
∂2xj

∂qi∂qk
q̇k +

∂2xj

∂qi∂t

]
Putting the two terms together, we obtain a transformation rule for the functional derivative:

δL′

δqi
=
∂L′

∂qi
− d

dt

[
∂L′

∂q̇i

]
=
∂xj

∂qi

(
∂L

∂xj
− d

dt

[
∂L

∂ẋj

])
=
∂xj

∂qi
δL

δxj
. (3.17)

Firstly, we see that if the functional derivative is zero in x, it follows that it must be zero in q
(since we assumed the Jacobian associated with x→ q has non-zero determinant) so our proof
is complete. But more importantly, we see that the functional derivative somehow transforms
as a covariant tensor! Note that none of the two terms in the functional derivative transforms
as a tensor, but their combination does.
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5 LINEAR ALGEBRA

5 Linear Algebra

5.1 Vector Spaces

Definition (Field). A field F is an abelian group under two binary operations, addition and
multiplication, denoted λ+µ and λµ respectively, with additional requirement that multiplication
distributes over addition; that is,

λ(µ+ ν) = λµ+ λν ∀λ, µ, ν ∈ F. (5.1)

Some examples of fields are real, complex and rational numbers.

Definition (Vector space). An F-vector space V is an abelian group under + : V × V → V
together with a function F× V → V , written (λ,~v) 7→ λ~v, satisfying the following:

1. λ(µ~v) = λµ~v,

2. λ(~v + ~u) = λ~v + λ~u,

3. (λ+ µ)~v = λ~v + µ~v,

4. 1~v = ~v where 1 is the multiplicative identity in F,

for all ~v, ~u ∈ V and λ, µ ∈ F. Denote by ~0 the additive identity in V .

Example (Coordinate space). The set Fn with elements represented by the n-tuple ~v =
(v1, . . . , vn), with addition and multiplication over F defined as

~v + ~u = (v1 + u1, . . . , vn + un), λ~v = (λv1, . . . , λvn)

is an F-vector space.

Example (Function spaces). Set of all functions f : X → F over some set X with addition and
multiplication over F defined as

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x)

s an F-vector space. We can restrict the elements to be continuous, differentiable, integrable
functions etc, as long as the properties of the functions we consider are preserved under addition
and multiplication.

Proposition. For any ~v ∈ V , 0~v = ~0.

Proof. By distributivity over F,
~v + 0~v = (1 + 0)~v = ~v.

Applying the additive inverse −~v yields 0~v = ~0.

Proposition. For any ~v ∈ V , (−1)~v = −~v.

Proof. Again follows from F distributivity:

~v + (−1)~v = (1− 1)~v = 0~v = ~0,

where we also used the previous proposition.

Definition (Subspace). A subset U ⊂ V is a subspace if it is a vector space with operations
inherited from V . We denote U ≤ V .

Example.

46

https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Vector_space


6 NUMERICAL METHODS

6 Numerical Methods

6.1 Numerical Integration

We would like to numerically solve an integral of the form∫ b

a

f(x) dx ,

for some real function f(x) defined over the domain x ∈ [a, b]. We are interested in obtaining
the best accuracy while doing a minimum number of calculations.

We will first look at two specific methods: trapezium and Simpson’s rule.

6.1.1 Trapezium rule

We approximate f(x) by picking a set of points called nodes, and joining consecutive nodes by
line segments. This is shown on Figure 1.

x

f(x)

a bx1 x2 x3

Figure 1:

There are 5 nodes in total, with x0 = a and x4 = b. The integral is then approximated by
the area bounded by the trapeziums. The general expression for a set of n nodes {xk} is∫ b

a

f(x) dx =

n−1∑
k=0

∫ xk+1

xk

f(x) dx ≈
n−1∑
k=0

f(xk) + f(xk+1)

2
(xk+1 − xk).

We can simplify this by choosing equidistant nodes, so that we only need to calculate (xk+1−xk)
once. Let

h ≡ b− a
n

⇒ xk = a+ hk.

Denoting f(xk) ≡ fk, we have∫ b

a

f(x) dx ≈ h

2

n−1∑
k=0

fk + fk+1 = h

(
f0

2
+ f1 + f2 + · · ·+ fn

2

)
. (6.1)

This is the trapezium rule.
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But we are not done yet. We need a method to estimate errors. In general, there is no way
to do so - we need to quantify how different f(x) is from a line on a given interval. However,
we may make progress if the second derivative of f is bounded on the interval [a, b].

Suppose that f has a bounded second derivative so that

|f ′′(x)| ≤M ∀ x ∈ [a, b],

for some M ≥ 0. Now, we Taylor expand f(x) around some x?.

f(x) = f(x?) + f ′(x?)(x− x?) + · · ·+ f (j)(x?)

j!
(x− x?)j +

f (j+1)(ξ)

(j + 1)!
(x− x?)j+1,

where in the last term, ξ ∈ [x?, x]. The last term is the Lagrange remainder (see Appendix A.2).
Now, we let j = 1 and x? = xk so we have

f(x) = f(xk) + f ′(xk)(x− xk) +
f ′′(ξ)

2
(x− xk)2,

rearranging this expression and integrating yields∫ xk+1

xk

f(x) dx − fkh− f ′(xk)
h2

2
=

∫ xk+1

xk

f ′′(ξ)

2
(x− xk)2 dx

⇒
∣∣∣∣∫ xk+1

xk

f(x) dx − fkh− f ′(xk)
h2

2

∣∣∣∣ ≤ M

2

∫ xk+1

xk

(x− xk)2 dx =
Mh3

6
, (6.2)

where we note that since we do not know how ξ depends on x, we cannot evaluate f ′′(ξ) hence
we need an upper bound. Let’s compute fk+1 by the same Taylor expansion:

fk+1 = fk + f ′(xk)h+
f ′′(ξ)

2
h2

⇒ |fk+1 − fk − f ′(xk)h| ≤ Mh2

2
(multiply by h/2)

⇐⇒
∣∣∣∣h (fk+1 + fk)

2
− hfk −

h2

2
f ′(xk)

∣∣∣∣ ≤ Mh3

4
(6.3)

Comparing (6.3) and (6.2), we see that the error on our approximation is given by∣∣∣∣h(fk+1 − fk)

2
−
∫ xk+1

xk

f(x) dx

∣∣∣∣ ≤ 5

12
Mh3. (6.4)

This is for a single line segment. To obtain the error bound over the whole interval [a, b], we
simply multiply by n: ∣∣∣∣∣

∫ b

a

f(x) dx −
n−1∑
k=0

h

2
(fk+1 − fk)

∣∣∣∣∣ ≤ 5

12
(b− a)Mh2. (6.5)

Hence, we see the error bounded on the order O(h2). As long as M and the interval length
(b− a) is not too large, trapezium can yield decent results. But we can do much better!

6.1.2 Simpson’s rule

This is a much better method than trapezium, due to the error bound being on order O(h4).
The rule is as follows:∫ b

a

f(x) dx ≈ h

6

(
f0 + 4f1/2 + 2f1 + 4f3/2 + · · ·+ 4fn−1/2 + fn

)
, (6.6)

where fk+1/2 = f(a+ (k+ 1/2)h). We will see where this method comes from, and how we can
come up with even better ones.
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6.1.3 General method

In general, it is not very helpful to think about integrals as areas under curves. That helps only
for the trapezium rule. The better way to think about an integral is as related to the average
value of f , since we have

〈f〉 =
1

(b− a)

∫ b

a

f(x) dx .

Generally, we may write

〈f〉 =
1

(b− a)

∫ b

a

f(x) dx ≈ 1

n

n−1∑
k=0

m∑
j=1

αjf(a+ hk + βjh),

⇒
∫ b

a

f(x) dx ≈ h
n−1∑
k=0

m∑
j=1

αjf(a+ hk + βjh), (6.7)

where βj are the nodes on interval [xk, xk+1] and αj are weights of the nodes. Note the similar-
ities to taking a weighted average!

The coefficients for the trapezium and Simpson’s rules are:

Trapezium: m = 2; α1 = α2 =
1

2
; β1 = 0, β1 = 1.

Simpson’s rule: m = 3; α1 =
1

6
, α2 =

4

6
, α3 =

1

6
; β1 = 0, β2 =

1

2
, β3 = 1.

How do we estimate errors in general? Suppose that we have a bound on the (k+1)st derivative
of f ,

|f (k+1)(x)| ≤M.

Taylor expanding f about some point xs up to the mth term:

f(x) = f(xs) + f ′(xs)(x− xs) + · · ·+ f (m)(xs)

m!
(x− xs)m +

f (m+1)(ξ)

(m+ 1)!
(x− xs)m+1

⇒ |f(x)− Pm(x)| ≤M (x− xs)m+1

(m+ 1)!
,

where Pm(x) is the first m terms in the Taylor expansion. Now, the idea is to choose αj and βj
such that for all polynomials gk(x) of degree k ≤ m, we have∫ 1

0

gk(x) dx =
m∑
j=1

αjgk(βj). (6.8)

This means the error will be bounded on the order O(hm+1).

Note. On equation (6.8), we are integrating from 0 to 1, but that does not matter. Since we
require all polynomials to satisfy the condition, we can scale and shift as we would like.

Example (Trapezium rule). Let’s check the condition (6.8) for the trapezium rule.

k = 0 :

∫ 1

0

dx = 1 =
1

2
(1) +

1

2
(1),

k = 1 :

∫ 1

0

xdx =
1

2
=

1

2
(0) +

1

2
(1),

k = 2 :

∫ 1

0

x2 dx =
1

3
6= 1

2
(0) +

1

2
(1)

The condition holds up to k = 1, which implies error bound is on order O(h2).

49



6.1 Numerical Integration 6 NUMERICAL METHODS

Example (Simpson’s rule). Let’s do the same procedure for Simpson’s rule.

k = 0 :

∫ 1

0

dx = 1 =
1

6
(1) +

4

6
(1) +

1

6
(1),

k = 1 :

∫ 1

0

x dx =
1

2
=

1

6
(0) +

4

6

(
1

2

)
+

1

6
(1),

k = 2 :

∫ 1

0

x2 dx =
1

3
=

1

6
(0) +

4

6

(
1

4

)
+

1

6
(1),

k = 3 :

∫ 1

0

x3 dx =
1

4
=

1

6
(0) +

4

6

(
1

8

)
+

1

6
(1),

k = 4 :

∫ 1

0

x4 dx =
1

5
6= 1

6
(0) +

4

6

(
1

16

)
+

1

6
(1).

We see that the condition holds for Simpson’s rule up to k = 3, which implies the error bound
is on the order O(h4).

Generally, we have a set of m equations of the form:

1 = α1 + · · ·+ αm

1

2
= α1β1 + · · ·+ αmβm

...

1

m
= α1β

m−1
1 + · · ·+ αmβ

m−1
m

Proposition. For any choice of nodes {βi}, we can find weights {αi} such that the error will
be O(hm). This is equivalent to saying a solution exists for any choice of βi. We assume βi 6= βj
if i 6= j.

Proof. Write the set of m equations in matrix form and show that the matrix of coefficients β
is invertible.

But we are not done yet! Note that we still have the freedom to choose the nodes {βj} as we
wish. By choosing the right nodes, we can reduce error below O(hm). In fact, we may reduce it
down to O(h2m). This is apparent when we consider that we have 2m variables in total, so we
may satisfy 2m equations. But how may we do this?

Let Qm be a polynomial of degree m such that Qm is orthogonal to all polynomials of degree
< m on the interval [0, 1]. So, we have∫ 1

0

Qmx
s dx = 0 ∀ 0 ≤ s < m.

Now, let β1, . . . , βm be the roots of Qm.

Proposition. For this choice of nodes, the error bound will be on order O(h2m).

Proof. We let gm+s(x) = Qm(x)xs. Then, the condition becomes

0 ≡
∫ 1

0

Qm(x)xs dx =

m∑
j=1

αjQm(βj)β
s
j = 0,

where the last equality is due to the βj being the roots of Qm.

50



A APPENDIX

A Appendix

A.1 Legendre Transform

The Legendre transform is a useful tool which we will use to switch between the Lagrangian
and the Hamiltonian. We have already used it for thermodynamic potentials.

Suppose we have a differentiable function f(x), and for some reason we are interested in
expressing f as a function of its derivative, p = df / dx . The simple choice f∗(p) = f(x(p))
won’t work because it does not have nice properties. We require that

df

dx
= p⇐⇒ df∗

dp
= x,

in other words, we want x and p to be conjugates under this transformation. Looking at the
differentials, we see that

df =
df

dx
dx = pdx ,

and we require
df∗ = xdx .

So, we define
f∗(p) = x(p)p− f(x(p)).

This is very simplified, for a better and more general treatment refer to other sources.
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