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Chapter 1

Introduction

1.1 Dynamical Systems

Dynamics is the subject that deals with systems that evolve in time. There are two main types
of dynamical systems:

1. Differential equations.

2. Iterated maps (difference equations).

Differential equations describe systems with continuous time evolution, whereas iterated maps
describe discrete evolution. We will focus on differential equations.

The general form for an autonomous system governed by ordinary differential equations is:

ẋi = fi(x1, x2, . . . , xn), i ∈ {1, 2, . . . , n}. (1.1.1)

We may denote the set of variables (x1, x2, . . . , xn) as a vector ~x. Later on, this will also em-
phasize that the system, at any given time, is described by a vector in the phase space.

Example (Damped oscillator). A damped oscillator in one dimension has an equation of motion
of the form:

mẍ = −kx− γẋ,

so we let x1 = x and x2 = ẋ. Hence, the system becomes

ẋ1 = x,

ẋ2 = − k
m
x1 −

γ

m
x2.

Definition (Linear system). A dynamical system of the form (1.1.1) is said to be linear if fi(~x)
is linear in xj for all i and j.

Definition (Nonlinear system). A system is said to be nonlinear if it is not linear.

Nonlinear systems are very difficult to solve analytically. Usually, analytic solutions do not
exist simply due to the fact that we do not have enough special functions. But, we don’t need
an analytic solution to describe such systems, we know qualitatively how a pendulum moves
around the top and etc. There should be a way of extracting such information without an
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1.2. PHASE SPACES AND TRAJECTORIES CHAPTER 1. INTRODUCTION

analytic solution. So, we will use geometrical methods in the phase space of the system.

Example (Pendulum). A pendulum with length ` and
mass m has the Lagrangian

L(θ, θ̇) = 1
2m(`θ̇)2 +mg` cos θ

=⇒ ∂L
∂θ̇

= m`2θ̇,
∂L
∂θ

= −mg` sin θ.

Hence, the equation of motion reads

θ̈ +
g

`
sin θ = 0.

To write this in the form (1.1.1), we let x1 = θ and x2 = θ̇:

ẋ1 = x2,

ẋ2 = −g
`

sinx1.

So, we see that the equivalent system is nonlinear.

θ

1.2 Phase Spaces and Trajectories

A solution to the pendulum system given some initial conditions is some pair of functions x1(t)
and x2(t). Notice that on a space with coordinates (x1, x2), the solution corresponds to a curve.

Definition (Phase space). The phase space for the general system (1.1.1) is the space with
coordinates x1, x2, . . . , xn. This is an nth order (or an n dimensional) system.

Definition (Trajectory). The curve xi(t) traced out by a solution to a given system is called a
trajectory.

Our goal is to draw trajectories for a given system without solving the differential equations.

Figure 1.1: Some phase trajectory.

Definition (Autonomous system). If the differential equations governing a system have no
explicit time dependence (such as a driving force), the system is said to be autonomous. (1.1.1)
is an autonomous system.
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1.2. PHASE SPACES AND TRAJECTORIES CHAPTER 1. INTRODUCTION

Definition (Non-autonomous system). If a system is not autonomous, it is non-autonomous.
This means fi(~x, t) has time dependence for some i.

Any non-autonomous system can be made to be autonomous by introducing time as a new
variable to the system. Given an n-dimensional non-autonomous system, let xn+1 = t. Then,
we have

ẋi =

{
fi(~x, xn+1) for i ∈ {1, 2, . . . , n},
1 for i = n+ 1.

which is autonomous.

Example (Forced harmonic oscillator). Consider a forced harmonic oscillator, with a forcing

term of the form ~F (t) = ~F cos t. Let us work in one dimension, in which case the equation of
motion reads

mẍ+ kx+ γẋ = F cos t.

This is traditionally a second order, linear, non-homogenous differential equation. We will,
however, treat it as a third order nonlinear system by letting x1 = x, x2 = ẋ and x3 = t. The
system is now

ẋ1 = x2,

ẋ2 = 1
m (−kx1 − γx2 + F cosx3),

ẋ3 = 1.
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Part I

One Dimensional Flow
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Chapter 2

Flows on the Line

We start with a one dimensional system, governed by the equation

ẋ = f(x), (2.0.1)

for some smooth function f .

Definition (One-dimensional / first order systems). Systems of the form (2.0.1).

Note that here “system” refers to a dynamical system, not a physical system. Also, f cannot
have any time dependence or otherwise the system would be two-dimensional.

2.1 Geometric Approach

The main idea is to treat the differential equation as a vector field in the phase space.
Consider the equation

ẋ = sinx. (2.1.1)

The analytical solution exists, but is complicated:

t = log

∣∣∣∣cscx0 + cotx0
cscx+ cotx

∣∣∣∣. (2.1.2)

By looking at (2.1.2), try to answer the following simple questions

1. Suppose x0 = π/4, what happens qualitatively to x(t) as t→∞?

2. For an arbitrary x0, what is the behaviour of the system as t→∞?

It now becomes clear that (2.1.2) is not very helpful. Yet, we may simply read off the answers
to the questions by plotting ẋ as a function of x.

Think of t as time, x as the position of a particle moving along the x-axis and ẋ its velocity.
Whenever ẋ > 0, the particle moves right, and if ẋ < 0 it moves left. When ẋ = 0, it remains
stationary. The equation (2.1.1) represents a vector field on the line.

Points where ẋ = 0 are fixed points. There are two kinds: stable (or attractor) represented
by solid dots, and unstable (or repeller) represented by open circles. This plot on the phase
space is called a phase portrait.

Now, the answers to the questions become almost trivial.
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2.2. FIXED POINTS AND STABILITY CHAPTER 2. FLOWS ON THE LINE

Figure 2.1: Phase portrait of (2.1.1)

2.2 Fixed Points and Stability

Definition (Fixed point). Given a general system of the form (1.1.1), a fixed point denoted ~x∗

is defined such that
ẋi = fi(~x

∗) = 0 for all i.

In a one dimensional system, we have

ẋ = 0 =⇒ f(x∗) = 0.

In terms of the differential equation, fixed points represent equilibrium solutions. An equi-
librium is defined to be stable if all sufficiently small disturbances away from it damp out in
time.

Definition (Locally stable fixed point). In an n-dimensional system, a fixed point ~x∗ ∈ Rn is
said to be locally stable if, given an initial condition x(t = 0) = ~x∗ + ~η, there exists ε > 0 such
that the limit lim

t→∞
x(t) = ~x∗ for all ~η where |~x− ~η| < ε.

Definition (Unstable fixed point). A fixed point is unstable if it is not locally stable.

Example. Consider the system

ẋ = x− cosx.

If we plot ẋ = x and ẋ = cosx separately, we
see that when x lies above the cosine, the flow is
to the right. Otherwise, the flow is towards the
left. At the intersection, we see that there is an
unstable fixed point. The fixed point is given by

x∗ = cosx∗.

2.3 Linear Stability Analysis

Apart from graphical methods, we may linearize our system about fixed points to get quan-
titative results about their stability. Let η(t) ≡ x(t) − x∗ be a small perturbation. Then, we
have

x(t) = η(t) + x∗ =⇒ ẋ = η̇ = f(η + x∗) = f(x∗) + ηf ′(x∗) + o(η),

7
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where we have assumed that f is continuously differentiable in the neighbourhood of x∗. For
small η we obtain a differential equation:

η̇ = ηf ′(x∗). (2.3.1)

Now, we see η(t) grows exponentially if f ′(x∗) > 0, and decays exponentially if f ′(x∗) < 0. In
the borderline case f ′(x∗) = 0, linearization does not tell us anything.

The magnitude of f ′(x∗) gives us a characteristic decay (or growth) rate near x∗.

Example (Logistic equation). The logistic equation describes population growth, with growth
rate per capita decreasing linearly as population increases - due to limited resources etc.
The equation is

ẋ = rx
(

1− x

K

)
,

where r and K are the growth rate and carrying capacity, both of which are positive. The fixed
points are x∗ = 0 and x∗ = K. We have

f ′(0) = r, f ′(K) = −r,

hence x∗ = 0 is unstable and x∗ = K is stable. In both cases, the characteristic rate of change
is r - as expected.
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Chapter 3

Bifurcations

We may introduce parameters which we can vary continuously on systems. This results in in-
teresting properties, such as fixed points being created or destroyed, or their stability changed.
Such qualitative changes in the behaviour of a system are called bifurcations. The parameter
causing the bifurcation is called bifurcation parameter. The value of the bifurcation parameters
at which the bifurcation occurs is called the bifurcation point.

Example (Buckling of beam). If a
weight is placed on top of a beam, de-
pending on its weight the beam can
either support it upright or buckle. A
previously stable solution becomes un-
stable and two new stable solutions ap-
pear. This is a (pitchfork) bifurcation.

3.1 Saddle-Node Bifurcation

This is the basic mechanism by which fixed points are created and destroyed. Consider the
system

ẋ = r + x2 for some r ∈ R . (3.1.1)

The fixed points are given by

0 = r + (x∗)2 =⇒ x∗ = ±
√
−r.

Since x is a real variable, this suggests that no fixed points exist for r > 0, when r = 0 there
is a single fixed point (with weird stability) and for r < 0, a stable and an unstable fixed point
exists. The stability is obvious from the plots - see Figure 3.1.

We may treat r as an independent variable and plot the fixed point x∗. This is called a
bifurcation diagram, see Figure 3.2. To distinguish between stable and unstable fixed points, we
use a solid line for stable points and a dashed line for unstable ones.

9



3.1. SADDLE-NODE BIFURCATION CHAPTER 3. BIFURCATIONS

Figure 3.1: Normal form saddle-node bifurcation.

Figure 3.2: Bifurcation diagram for (3.1.1).

Example (Saddle-node bifurcation). Consider the system

ẋ = r − x− e−x =⇒ r = x∗ + e−x
∗
.

Instead of plotting the bifurcation diagram, an easier approach is to plot ẋ, by
plotting r − x and e−x. When they intersect, we have r − x = e−x which
is a fixed point. We may also infer the flow by the positions of the curves.

To find the bifurcation point rc, we impose the condition r − x and e−x intersect tangentially.
This is a characteristic of saddle-node bifurcations in one dimensional systems. Hence, we require

e−x = r − x, and d
dx e
−x = d

dx (r − x), =⇒ rc = 1.
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3.2. TRANSCRITICAL BIFURCATION CHAPTER 3. BIFURCATIONS

3.1.1 Normal forms

We may classify bifurcations by “how the system looks like close to the the bifurcation”, meaning
the local properties of the system close to a bifurcation point and the phase position at which
the bifurcation occurs. These are known as normal forms, and for a saddle-point bifurcation
they are

ẋ = r ± x2. (3.1.2)

Let’s see how we can obtain this normal form by imposing the tangency condition (as r is varied
ẋ must intersect x tangentially. Consider f(x) as a function of x and r. Expanding around
(x∗, rc) yields

f(x, r) = f(x∗, rc) + (x− x∗) ∂f
∂x

∣∣∣∣
x∗,rc

+ (r − rc)
∂f

∂r

∣∣∣∣
(x∗,rc)

+ 1
2 (x− x∗)2 ∂

2f

∂x2

∣∣∣∣
(x∗,rc)

+ . . .

Now, we note that f(x∗, rc) is a fixed point. By tangency condition, ∂f/∂x = 0 at (x∗, rc).
With the first two terms zero and ignoring higher terms, we obtain the normal form.

3.2 Transcritical Bifurcation

Some fixed points may exist for all values of a parameter in a given system. However, such
a fixed point may change its stability as the parameter is varied. Such a bifurcation is called
transcritical.

The normal form for a transcritical bifurcation is

ẋ = rx− x2. (3.2.1)

This looks like the logistic equation, but we are not limited to non-negative x and r. Figure 3.3
shows the system for different values of r.

Figure 3.3: Transcritical bifurcation in one dimension.

Note that x∗ = 0 is a fixed point for all r. The fixed point is stable for r < 0, and unstable
for r > 0. Hence, in its normal form (3.2.1), the bifurcation occurs at rc = 0.

Example. The system ẋ = x(1 − x2) − a(1 − e−bx) undergoes a transcritical bifurcation at
x = 0 when ab = 1. This defines a bifurcation curve in the (a, b) parameter space. To see this,
we expand f(x) around x = 0,

ẋ = (1− ab)x+
ab2

2
x2 +O

(
x3
)
,

hence bifurcation occurs if ab = 1. We know this must be a transcritical bifurcation because
around x = 0, it satisfies the normal form. Note that x∗ = 0 is a fixed point for all a and b.
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3.3. PITCHFORK BIFURCATION CHAPTER 3. BIFURCATIONS

Figure 3.4 shows the bifurcation diagram for the transcritical bifurcation in its normal form.
We see that x = r is an unstable fixed point for r < 0, and stable for r > 0. The opposite is
true for x = 0.

Figure 3.4: Bifurcation diagram for the normal form of transcritical bifurcation.

3.3 Pitchfork Bifurcation

This is common in physical problems that have symmetry. Fixed points appear and disappear
in symmetrical pairs. There are two kinds of pitchfork bifurcation: supercritical and subcritical.

3.3.1 Supercritical pitchfork bifurcation

The normal form of the supercritical pitchfork bifurcation is

ẋ = rx− x3. (3.3.1)

Note the x→ −x symmetry of the system.

Figure 3.5: Supercritical pitchfork bifurcation in one dimension.

We see from Figure 3.5 that for r < 0, x∗ = 0 is the only fixed point and is stable. At r = 0,
x∗ = 0 is still stable but solutions do not decay exponentially to x = 0 in its neighborhood. The
decay is polynomial, so much slower. This slow decay is called critical slowing down in physics.
When r > 0, the origin is unstable but two new stable fixed points appear at x∗ = ±

√
r. The

bifurcation diagram is plotted on Figure 3.6.

Example. The system ẋ = −x+β tanhx exhibits a supercritical pitchfork bifurcation. Plot it!

12
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Figure 3.6: Bifurcation diagram for supercritical pitchfork.

3.3.2 Subcritical pitchfork bifurcation

In the supercritical case, the cubic term (−x3 in equation (3.3.1)) is stabilizing. The flow is
“pulled” to the centre due to it. If instead, the cubic term were destabilizing such that

ẋ = rx+ x3, (3.3.2)

then we would have a subcritical pitchfork bifurcation. The bifurcation diagram is shown on
Figure 3.7.

Figure 3.7: Bifurcation diagram for subcritical pitchfork bifurcation in one dimension.

Example. Consider the system ẋ = rx + x3 − x5. The fifth term prevents the system from
blowing up to infinity. We would expect a subcritical pitchfork bifurcation at x = 0. At x∗ = 0,
we always have a fixed point. It is stable if r < 0, and unstable if r > 0. Excluding x∗ = 0, we
have

r + x2 − x4 = 0 =⇒ r = x4 − x2.

Note that the minimum value of r is rmin = − 1
4 . Hence, for r < − 1

4 we expect a single fixed
point at x = 0, which is stable. After explicitly solving for x or plotting ẋ(x, r) we see that if
− 1

4 < x < 0, there are 4 more fixed points, two of which are stable. Finally, for r > 0, the two
unstable fixed points disappear. We may plot a bifurcation diagram, which looks interesting.

13



3.4. IMPERFECT BIFURCATIONS CHAPTER 3. BIFURCATIONS

Imagine moving along the r-axis. The state re-
mains at the origin until r = 0, when the origin
loses stability. The state will jump to one of
the stable branches. If r is now decreased, the
state remains on the large-amplitude branch,
even when r is decreased below 0! We have to
lower r even further to get the state to jump
back to the origin. This lack of reversibility as
a parameter is varied is called hysteresis.
At the turning point, there is a saddle-point bi-
furcation. Stable and unstable fixed points are
created in pairs.

x

0 r
0

3.4 Imperfect Bifurcations

Perfect symmetries led to pitchfork bifurcations, but in many real systems there is a slight
asymmetry due to imperfections. Consider the system

ẋ = h+ rx− x3. (3.4.1)

When h = 0, we have a supercritical pitchfork bifurcation. However, for h 6= 0 the x → −x
symmetry is broken. Hence, h is called an imperfection parameter.

Since we have two independent parameters, this is a bit harder to analyse. First, consider
varying h for fixed r. Plotting y = rx− x3 and y = −h, the intersections would occur at fixed
points of (3.4.1). When r ≤ 0, there is only one fixed point; however, when r > 0 three fixed
points may occur depending on the value of h. This is the interesting regime. These plots are
shown on Figure 3.8.

Figure 3.8: Plot of system (3.4.1) at fixed r with different h.

At |h| = hc, we obtain a saddle-node bifurcation. We may find hc by noting that the two
curves intersect tangentially. The local maximum of rx− x3 occur at xmax = ±

√
r/3, hence

±hc(r) =
∣∣rxmax − x3max

∣∣ =
2r

3

√
r

3
.
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So, equation (3.4.1) has 3 fixed points for |h| < hcr and 1 fixed point otherwise. We may
plot the bifurcation curves ±hc(r) on the (r, h) plane - see Figure 3.9. Such plots are called
stability diagrams - they show different behaviour as we move in parameter space. The two
bifurcation curves separate the plane into two regions. A saddle-point bifurcation occurs along
the boundary. The bifurcation curves meet tangentially at the origin - this is called a cusp
point. At the cusp point, a codimension-2 bifurcation takes place (meaning we had to tune two
parameters instead of one).

Figure 3.9: Stability diagram for an imperfect pitchfork bifurcation.

We may also draw bifurcation diagrams for fixed h - see Figure 3.10.

Figure 3.10: Bifurcation diagram for fixed h.

Alternatively, we can plot x∗ vs. h for fixed r, Figure 3.11.

Figure 3.11: Plot of x∗ vs. h for fixed r.
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Chapter 4

Flows on the Circle

We now consider equations of the form

θ̇ = f(θ), (4.0.1)

where θ (phase) corresponds to a point on the circle. For the vector field defined by (4.0.1)
to be well-defined and smooth, we require f(θ) to be 2π−periodic and smooth. For instance,
θ̇ = sin θ is a valid system on the circle whereas θ̇ = θ is not.

Example. Consider θ̇ = cos θ. Fixed points occur at cos θ∗ = 0. One fixed point is stable
θ∗ = 1

2π and the other is unstable θ∗ = 3
2π.

4.1 Uniform Oscillator

The simplest system is when the phase θ changes with a constant rate ω, so we have

θ̇ = ω ⇒ θ = ωt+ θ0, (4.1.1)

which corresponds to uniform motion around the circle at an angular frequency ω. This is the
simplest periodic system.

Note that there is no amplitude variable in our system, since the system is one-dimensional.
We only have the phase of an oscillating system.

4.2 Nonuniform Oscillator

Consider the system
θ̇ = ω − a sin θ. (4.2.1)

Now, the angular frequency varies with the phase, with mean ω. For ω and a positive, the flow
is fastest at θ = −π/2 and slowest at θ = π/2.

As a approaches ω, the system takes a long time to pass through a bottleneck around π/2.
When a = ω, a saddle-node bifurcation occurs at π/2 and the system no longer oscillates. This
behaviour is obvious from a (θ, θ̇) plot.

4.2.1 Oscillation period

For a < ω. we may calculate the oscillation period analytically. It is given by

T =

∫
dt =

∫ 2π

0

dt

dθ
dθ =

∫ 2π

0

dθ

ω − a sin θ
.

16



4.2. NONUNIFORM OSCILLATOR CHAPTER 4. FLOWS ON THE CIRCLE

We may evaluate this integral using contours. Let γ be the unit circle contour on the complex
plane. Then, we have the parameterisation

z = eiθ ⇒ dz = izdθ, sin θ =
1

2i

[
z − 1

z

]
.

The period is then given by the contour integral

T =

∮
γ

dz

−a2z2 + iωz + a
2

=
2π√

ω2 − a2
.

We see that we retain the period for the uniform oscillator when a = 0. As a → ω, the period
blows up. The order of divergence is

T (a→ ω−) =
2π√

ω + a
√
ω − a

≈ 2π√
2ω

(ω − a)−1/2.

Hence, T diverges with a square-root scaling law.

4.2.2 Ghosts and bottlenecks

The square-root scaling is a general feature of systems close to a saddle-node bifurcation. Just
before the fixed points appear, the “ghost” of the saddle-node bifurcation leads to slow passage
through the bottleneck.

The system spends almost all its time getting through the bottleneck as a → ω−. We look
at the behaviour of θ̇ in the vicinity of the minimum. We may work with the normal form for
a saddle-node;

ẋ = r + x2, (4.2.2)

where r � 1 and r > 0.
Now, we want characteristic length and time scales, then the period will be on the order of

the characteristic time. Suppose x has a characteristic scale O(ra) for some a. Let x = rau
where u ∼ O(1). Similarly suppose t = rbτ with τ ∼ O(1). Then, our system (4.2.2) becomes

ẋ = r + x2 =⇒ du

dτ

dτ

dt

dx

du
= ra−b

du

dτ
= r + r2au2.

Note that u and τ are dimensionless variables, hence the terms du/dτ and u2 form dimensionless
groups. For dimensional consistency, we require all the terms to be of the same order in r,
therefore

a− b = 1 ∧ 2a = 1 =⇒ a =
1

2
, b = −1

2
.

The characteristic time scale is of order τ ∼ O
(
r−1/2

)
, showing the square root scaling.

We may arrive at the same result by considering the time it takes for the system to travel
from x→ −∞ to x→∞,

T ∼
∫ ∞
−∞

dx

ẋ
=

∫ ∞
−∞

dx

r + x2
=

π√
r

= O
(
r−1/2

)
.

17
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Example. Consider the system (4.2.1) in the limit a→ ω− around the point θ = π/2:

θ̇ = ω − a sin θ = (ω − a)− 1
2 (θ − π

2 )2(a sin π
2 ) +O

(
(θ − π/2)3

)
.

Let φ ≡ θ − π/2, x =
√
a/2φ and r = ω − a, then

φ̇ = ω − a+ 1
2aφ

2 +O
(
φ3
)
⇔ (2/a)1/2ẋ = r + x2 +O

(
x3
)
.

Then, the period is given by

T ∼
∫ ∞
−∞

dx

ẋ
=

(
2

a

)1/2 ∫ ∞
−∞

dx

r + x2
=

(
2

a

)1/a
π√
r
≈
(

2

ω

)1/2
π√
ω − a

,

which agrees exactly with our previous result.

Example (Overdamped pendulum under constant torque). Con-
sider a pendulum driven by a constant torque Γ. First, let’s write
the Lagrangian.

L(θ, θ̇) = T (θ̇)− V (θ) + F extθ

where we are adding the constant torque in the form of a driving
force. Then,

L =
1

2
m(`θ̇)2 −mg` cos θ + Γθ.

The equation of motion, with the non-variational damping is given
by

γθ̇ =
δL
δθ

= Γ−mg` sin θ −m`2θ̈.

In the overdamped limit, we ignore the θ̈ term. Non-
dimensionalizing the equation, we obtain

dθ

dτ
= ξ − sin θ,

where τ ≡ mg`t/γ and ξ ≡ Γ/mg`. We see that ξ is the ratio of the
driving torque to the maximum gravitational torque. When ξ > 1,
the pendulum can overturn periodically. As ξ → 1+, it takes longer
to complete its motion around θ = π/2, so we have a bottleneck.
At ξ = 1, a saddle-point bifurcation occurs at θ = π/2 and the
system behaves as we would expect.
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Part II

Two Dimensional Flows
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Chapter 5

Linear Systems

5.1 Introduction

In higher dimensions a much wider range of dynamical behaviour is possible. Linear systems
are the simplest, but they play an important role in the classification of fixed points of nonlinear
systems.

Definition (Two-dimensional linear system). Is a system of the form

ẋ = ax+ by

ẏ = cx+ dy,
(5.1.1)

where a, b, c, d are parameters. We may write (5.1.1) in matrix form

~̇x = A~x, (5.1.2)

where A =

(
a b
c d

)
and ~x =

(
x
y

)
.

Since the system is linear, given two solutions ~x1 and ~x2, any linear combination c1~x1 + c2~x2
is also a solution. Furthermore, for any linear system

~x = ~0 =⇒ ~̇x = ~0.

Hence ~x∗ = ~0 is always a fixed point.
The solutions of ~̇x = A~x can be visualised as trajectories moving on the (x, y) phase plane.

Example. Consider the system ~̇x = A~x, with A =

(
a 0
0 −1

)
and ~x =

(
x
y

)
. We may solve this

uncoupled system analytically,

~̇x = ax =⇒ x(t) = x0e
at,

~̇y = −y =⇒ y(t) = y0e
−t.

The phase plane vector field is defined by (ẋ, ẏ) = (ax,−y).
When a < 0, ~x∗ = ~0 is a stable node. In the special case a = −1, ~x∗ is called a symmetrical

node or a star. The direction of approach to the fixed point as t→ +∞ is along the slow axis.
In the case a < −1, the x component decays faster, so the trajectories approach ~x∗ along the
y-axis. The opposite happens for −1 < a < 0.

When a = 0, we have an entire line of fixed points along the x -axis.
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Finally, when a > 0, ~x∗ is unstable due to the exponential growth in the x -direction. In
forward time, trajectories are asymptotic to the x -axis and in backward time to the y-axis.
Here ~x∗ = ~0 is a saddle-point. The y-axis is called the stable manifold of the saddle point
~x∗, defined as the set of initial conditions ~x0 such that ~x(t) → ~x∗ as t → +∞. Likewise, the
unstable manifold of ~x∗ is the set of initial conditions such that ~x(t)→ ~x∗ as t→ −∞. A typical
trajectory asymptotically approaches the unstable manifold as t → +∞, and approaches the
stable manifold as t→ −∞.

5.1.1 Stability definitions

For all the following definitions, let ~x∗ be a fixed point of some system ~̇x = ~f(~x).

Definition (Attracting fixed point). ~x∗ is attracting if there exists δ > 0 such that

lim
t→∞

~x(t) = ~x∗

for all initial conditions satisfying |~x(0)− ~x∗| < δ. So, any trajectory that starts within a
distance δ of ~x∗ if guaranteed to converge to ~x∗ eventually.

Definition (Lyapunov stable). ~x∗ is Lyapunov stable if for any ε > 0 there exists δ > 0 such
that |~x(t)− ~x∗| < ε for all t ≥ 0 and |~x(0)− ~x∗| < δ.

So, trajectories that start within δ of ~x∗ remain within ε of ~x∗ for all positive time.

Definition (Asymptotically stable). ~x∗ is asymptotically stable if it is both attracting and
Lyapunov stable.

Definition (Globally attractive). If ~x∗ is attracting for all point on the phase plane, it is globally
attractive.
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Definition (Neutrally stable). If ~x∗ is Lyapunov stable but not attracting, it is neutrally stable.

Definition (Unstable). If ~x∗ is neither attracting nor Lyapunov stable, then it is unstable.

Note (Graphical convention). Open dots denote unstable fixed points, solid black dots denote
Lyapunov stable fixed points.

Figure 5.1: Attracting (left) and Lyapunov stable (right).

5.2 Classification of Fixed Points

For a general linear system, the equations will not be uncoupled. We seek solutions of the form

~̇x(t) = eλt~v. (5.2.1)

For a given ~v 6= 0, any phase space trajectory that starts on the subspace spanned by ~v (which
is a line on the phase space,) will never leave it.

Combining the equations (5.1.2) and (5.2.1) yields

~̇x = A~x =⇒ λeλt~v = Aeλt~v.

Hence we obtain the eigenvalue problem

A~v = λ~v. (5.2.2)

The characteristic equation yields
λ2 − τλ+ ∆ = 0,

where ∆ ≡ det(A) and τ ≡ tr(A). The eigenvalues are then given by

λ± =
τ ±
√
τ2 − 4∆

2
. (5.2.3)

For distinct eigenvalues, the eigenvectors are linearly independent. Hence, any initial condition
can be written as a linear combination of the eigenvectors. So, we immediately obtain the
general solution:

~x0 = c1~v1 + c2~v2 =⇒ ~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2.

Definition (Saddle point). When the eigenvalues are real and have opposite signs, the corre-
sponding fixed point is a saddle point.
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Figure 5.2: Phase portrait of a typical saddle point.

Figure 5.3: Phase portrait of a typical stable node.

Definition (Stable node). When both eigenvalues are real and negative, the fixed point is a
stable node.

Definition (Unstable node). When both eigenvalues are real and positive, the fixed point is an
unstable node.

Example. Consider the system ẋ = x+ y, ẏ = 4x− 2y. Written in matrix form,

~̇x = A~x with A =

(
1 1
4 −2

)
.

By (5.2.3), the eigenvalues are
λ1 = 2, λ2 = −3.

Two eigenvectors are

~v1 =

(
1
1

)
, ~v2 =

(
1
−4

)
.

The trajectories decay along ~v2 and grow along ~v1. The fixed point is a saddle point.

5.2.1 Centres and spirals

If the eigenvalues are not real, then the fixed point is either a centre or a spiral. Complex
eigenvalues occur when τ2 − 4∆ < 0.

Let λ± = α± iω where α ≡ τ/2 and ω ≡ 1
2

√
4∆− τ2. The solution is then given by

~x(t) = eαt
(
c1e

iωt~v1 + c2e
−iωt~v2

)
.
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When α = 0, the fixed point is a centre and trajectories are closed orbits. For α > 0, the
trajectories exponentially grow so we get an unstable spiral. Likewise, when α < 0, we have
stable spirals. The fixed point is attracting and Lyapunov stable for α < 0, neutrally stable for
α = 0 and unstable for α > 0.

Figure 5.4: Phase portraits of a centre (left) and a stable spiral (right).

5.2.2 Degenerate eigenvalues

Suppose λ1 = λ2 = λ. If there are two linearly independent eigenvectors, the matrix A must be
of the form A = λI. To see this, note that the existence of two linearly independent eigenvectors
with the same eigenvalue implies that any vector is an eigenvector. The solutions are

~x(t) = eλt~x0,

so trajectories are straight lines through the origin and the fixed point is a star. If λ > 0, the
origin is unstable and if λ < 0 it is stable.

The other possibility is that there is only one eigenvector. In such a case, the fixed point is
a degenerate node. There is only one direction of approach. As t → ±∞, trajectories become
parallel to the single eigenvectors. One way to think of a degenerate node is as the limit of the
two eigenvectors of a regular node approaching each other. Some of the trajectories will get
squished between the two eigenvectors, while surviving trajectories get pulled around.

Figure 5.5: Degenerate node as a limit of the eigenvectors of a node approaching each other.

A degenerate node is on the borderline between a spiral and a node.

5.2.3 General classification scheme

The only information we need to classify the fixed points are the eigenvalues, which obey the
relations:

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
, ∆ = λ1λ2, τ = λ1 + λ2, (5.2.4)
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where τ and ∆ are the trace and determinant of the matrix A. The second and third relations
are implied by the characteristic equation:

(λ− λ1)(λ− λ2) = λ2 − τλ+ ∆ = 0.

Figure 5.6: Classifications of fixed points on a trace-determinant diagram.
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