
Basics of Probability

Emre Özer
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1 PROBABILITY

1 Probability

1.1 Definitions and properties

We are concerned with probability in the context of experiments.

Definition (Trial). A trial is a single performance of an experiment.

Definition (Outcome). Each possible result of a trial is called an outcome.

Definition (Sample space). In a given experiment, the set of all possible outcomes of an indi-
vidual trial is called the sample space, denoted S.

Example. For a coin flip, the sample space is S = {Heads,Tails}. For a die, we have S =
{1, 2, 3, 4, 5, 6}.

Definition (Event). An event is a subset of the sample space. We may denote A ⊆ S.

Definition (Mutually exclusive events). Two events A,B ⊆ S are said to be mutually exclusive
if and only if A ∩B = ∅.

Definition (Complement of event). Given an event A ⊆ S, its complement is defined as the
set of all outcomes in the sample space not in A, given by A := {x ∈ S|x /∈ A}.

Definition (Frequentist probability). The probability Pr(A) of some event A is the expected
relative frequency of the event in a large number of trials. If there is a total of nS outcomes,
and nA of those correspond to the event A, then the probability Pr(A) is given by

Pr(A) =
nA
nS

. (1.1)

Proposition (Properties of probabilities). From (1.1) we deduce the following set of axioms:

1. Given a sample space S, we have

0 ≤ Pr(A) ≤ 1, ∀A ⊆ S. (1.2)

2. We are certain to obtain one of the outcomes:

Pr(S) =
nS
nS
≡ 1. (1.3)

3. Given two events A,B ∈ S, we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B). (1.4)

This follows from (1.1), noting that nA∪B = nA + nB + nA∩B . If A and B are mutually
exclusive, we obtain the special case

Pr(A ∪B) = Pr(A) + Pr(B). (1.5)

4. Complement events are mutually exclusive, so consider some A ⊆ S and its complement
A. We have

1 = Pr(S) = Pr(A ∪A) = Pr(A) + Pr(A),

from which we obtain the complement law :

Pr(A) = 1− Pr(A). (1.6)

These properties can be extended to multiple events, although unions become more compli-
cated.
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1.2 Conditional probability 1 PROBABILITY

1.2 Conditional probability

Definition (Conditional probability). The conditional probability is the probability that a par-
ticular event occurs given the occurrence of another, possibly related, event.

Suppose we are interested in the probability that an event B ⊆ S will occur, given that
A ⊆ S has happened. We denote this by Pr(B|A). Now, notice that the probability of A and
B will happen is given by

Pr(A ∩B) = Pr(A) Pr(B|A) = Pr(B) Pr(A|B).

So, we have

Pr(B|A) =
Pr(A ∩B)

Pr(A)
, (1.7)

Pr(A|B) =
Pr(A ∩B)

Pr(B)
. (1.8)

Note (Reduced sample space). We may think of Pr(B|A) as the probability of B in the reduced
sample space defined by A. Hence, if A and B are mutually exclusive, we have

Pr(A ∩B) = Pr(B ∩B) = Pr(∅) ≡ 0.

Definition (Statistically independent events). Two events A,B ⊆ S are said to be statistically
independent if Pr(A|B) = Pr(A)⇔ Pr(B|A) = Pr(B). In other words, the probability of one is
independent of the occurrence of the other.

If A and B are statistically independent, it follows from (1.7) and (1.8) that

Pr(A ∩B) = Pr(A) Pr(B). (1.9)

Equation (1.9) may be taken as the definition of statistical independence. The concept can be
extended to a set of events {Ai}, which are said to be mutually independent if

Pr(A1 ∩A2 ∩ . . . ∩An) =

n∏
i=1

Pr(Ai).

Proposition (Addition law for conditional probabilities). Suppose A ⊆ S is a union of n
mutually exclusive events Ai. Given another event B ⊆ S, we have

Pr(A|B) =
∑
i

Pr(Ai|B)⇐⇒ Pr(A) Pr(B|A) =
∑
i

Pr(Ai) Pr(B|Ai) (1.10)

Proof. Consider the probability Pr(A ∩B), we have

Pr(A ∩B) = Pr((A1 ∩B) ∪ . . . ∪ (An ∩B)) =
∑
i

Pr(Ai ∩B),

where we used equation (1.5) since each Ai is mutually exclusive. Substituting using (1.7) and
(1.8) yields the two equivalent relations in (1.10) respectively.

Proposition (Total probability law). In the special case where the events Ai exhaust the sample
space S such that A = S, we have A ∩B = S ∩B = B, and (1.10) implies

Pr(B) =
∑
i

Pr(Ai) Pr(B|Ai). (1.11)

Proof. From (1.10), we have∑
i

Pr(Ai) Pr(B|Ai) = Pr(A) Pr(B) = Pr(S) Pr(B) = Pr(B).
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1.2.1 Bayes’ theorem

This result follows directly from (1.7) and (1.8).

Theorem (Bayes’ theorem). Given two events A,B ⊆ S, we have

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
. (1.12)

In most cases, Pr(B) will not be known, so let’s look at different ways to express it. Firstly, note
that the event A, together with its complement A form a mutually exclusive set which exhausts
S. Hence, by (1.11) we have

Pr(B) = Pr(A) Pr(B|A) + Pr(A) Pr(B|A),

so that Bayes’ theorem becomes

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(A) Pr(B|A) + Pr(A) Pr(B|A)
. (1.13)

We may go further and note that each outcome is mutually exclusive. Therefore, considering
each outcome as an event, we may write

Pr(B) =
∑
i

Pr(xi) Pr(B|xi), where xi ∈ S.

This yields

Pr(A|B) =
Pr(B|A) Pr(A)∑
i Pr(xi) Pr(B|xi)

. (1.14)

Finally, we may look at relative probabilities. Let A,B,C ⊆ S and consider the relative proba-
bilities of A and C given the occurrence of B. Then, we have

Pr(A|B)

Pr(C|B)
=

Pr(B|A) Pr(A)

Pr(B|C) Pr(C)
. (1.15)

1.3 Permutations and combinations

When calculating probabilities, it is necessary to count the number of occurrences of events.
The way we count depends on whether the occurrences are distinguishable, and if the order
matters.

1.3.1 Permutations

Consider a set of n distinguishable objects. How many ways can we arrange them (how many
permutations exist)? We have n options for the first position, (n− 1) for the second and so on.
So, it is easy to see that n objects may be arranged in

n× (n− 1)× (n− 2)× . . .× (1) = n!

different ways. We may generalise by considering choosing k < n objects from n. The number
of possible permutations is

n× (n− 1)× . . .× (n− k + 1)︸ ︷︷ ︸
k factors

=
n!

(n− k)!
:= P (n, k).

So far we have considered objects sampled without replacement. If, on the other hand we sample
k objects from a set of n with replacement, it is clear that the number of permutations is nk.
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Finally, we consider the case of indistinguishable objects. Assume that n1 objects are of type
1, n2 objects are of type 2 and so on. The number of distinguishable permutations of a group
of n such objects is

n!

n1!× n2!× . . .× nm!
.

1.3.2 Combinations

Now, consider the number of combinations of objects when the order is not important. Since
there are P (n, k) permutations, and k objects may be arranged in k! ways, we have

C(n, k) :=
n!

(n− k)!k!
.

Note that these are also the binomial coefficients.
Another case is consider dividing n objects into m piles, with ni objects in the ith pile. The

number of ways to do so is
n!

n1!× n2!× . . .× nm!
.

These are the multinomial coefficients. Note that this is identical to distinguishable permuta-
tions of groups of indistinguishable objects.

1.4 Random variables

Definition (Random variable). Given a sample space S, a random variable assigns a real
number to each possible outcome. In a sense, we can treat a random variable as a map X : S →
R.

Furthermore, assuming that a probability can be assigned to all possible outcomes in a
sample space S, it is possible to assign a probability distribution to any random variable.

1.4.1 Discrete random variables

Definition (Discrete random variable). A random variable X is a discrete random variable if it
takes values from a discrete set, such thatX ∈ {x1, x2, . . . , xn}, with probabilities {p1, p2, . . . , pn}.

Definition (Probability function). Given a discrete random variable, we can define a probability
function f(x) which assigns probabilities to the domain of X,

f(x) = Pr(X = x) =

{
pi if x = xi,

0 otherwise.
(1.16)

We require ∑
i

f(xi) = 1.

Definition (Cumulative probability function). A cumulative probability function F (x) of some
random variable X is the probability that X ≤ x, so that

F (x) = Pr(X ≤ x) =
∑
xi≤x

f(xi). (1.17)

Proposition. The probability that the random variable X lies between two values a < b ∈ R
is given by

Pr(a < X ≤ b) = F (b)− F (a),

where F (x) is the cumulative probability function.
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Proof. Given a probability function f(x), we have

Pr(a < X ≤ b) =
∑

a<xi<b

f(xi) =
∑
xi≤b

f(xi)−
∑
xi≤a

f(xi) ≡ F (b)− F (a)

1.4.2 Continuous random variables

Definition (Continuous random variables). A random variables X is said to be continuous if
it is defined over a continuous domain.

Definition (Probability density function). A probability density function (PDF) f(x) of a con-
tinuous random variable X is defined such that

Pr(x < X ≤ x+ dx ) = f(x) dx . (1.18)

It follows from this definition that f(x) ≥ 0 for all x ∈ D where D is the domain over which the
random variable is defined.

Similar to a probability function, we require the probabilities to sum to one. So, we require∫
x∈D

f(x) dx = 1.

The probability that X lies in the interval [a, b] for some a < b ∈ D is then given by

Pr(a < X ≤ b) =

∫ b

a

f(x) dx .

Definition (Cumulative probability density function). We define the cumulative density F (x)
by

F (x) = Pr(X < x) =

∫ x

xl

f(x′) dx′

where xl is the infimum of the domain D.

Proposition. The probability density and the cumulative density are related so that

f(x) =
dF (x)

dx

Proof. Consider the probability that X lies in some interval [a, b].

Pr(a < X ≤ b) =

∫ b

a

f(x) dx =

∫ b

xl

f(x) dx −
∫ a

xl

f(x) dx = F (b)− F (a).

Proposition. A discrete random variable can be treated as continuous, with a probability
density of the form

f(x) =
∑
i

piδ(x− xi),

where δ(x− xi) is the Dirac delta function.

Proof. Simply calculate the probability Pr(a < X ≤ b):

Pr(a < X ≤ b) =
∑
i

∫ b

a

piδ(x− xi) dx =
∑
i

pi,

where the final sum only includes values of xi that lie between a and b.
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1.4.3 Multiple random variables

We can consider multiple random variables. Generally, the variables may depend on each other
and are described by a joint probability density function. Let X and Y be two random variables.
If they are discrete, we have

Pr(X = xi, Y = yi) = f(xi, yi),

and if they are continuous,

Pr(x < X ≤ x+ dx , y < Y ≤ y + dy ) = f(x, y) dx dy .

If the two variables are independent, we may use equation (1.9), which implies

f(x, y) = g(x)h(y),

where g(x) and h(y) are density functions for the two variables.

1.5 Functions of random variables

Suppose x is some random variable for which the probability density function f(x) is known.
In many cases, we are more interested in a related random variable y = y(x). What is the
probability density function g(y) for the new variable y?

1.5.1 Discrete random variables

If x is discrete, then we have x ∈ {x1, x2, . . . , xn}. In this case, y must also be discrete, and is
given by yi = y(xi).

If the function y(x) is single-valued, then there exists an inverse x(y) and the probability
function becomes very simple:

g(y) =

{
f(x(yi)) if y = yi,

0 otherwise.

The complications arise when the function y(x) is not necessarily single-valued. In this case, we
need to sum over all xj such that yi = y(xj). The probability function is

g(y) =

{∑
j f(xj) if y = yi,

0 otherwise.

The sum over j is performed over all j such that yi = y(xj).

1.5.2 Continuous random variables

The probability that y lies in the range [y, y + dy ] is given by

g(y) dy =

∫
dS

f(x) dx , (1.19)

where dS = {x ∈ D : y ≤ y(x) ≤ y + dy } corresponds to all values of x for which y(x) lies in
the range [y, y + dy ]. This is completely general.

Let’s start with the single-valued case again. Then, we simply have

g(y) dy =

∫ x(y+dy )

x(y)

f(x) dx = f(x(y))(x(y + dy )− x(y))
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=⇒ g(y) =

∣∣∣∣ dx

dy

∣∣∣∣ f(x(y)).

Generally, let {xi} be the set of x values which satisfy y = y(xi). Then, we have

g(y) dy =
∑
xi

∣∣∣∣∣
∫ xi(y+dy )

xi(y)

f(x) dx

∣∣∣∣∣
=⇒ g(y) =

∑
xi

∣∣∣∣ dxi
dy

∣∣∣∣ f(xi(y)).

1.6 Properties of distributions

We define some useful measures such as expectation values and variances. These give us useful
information about the distributions.

Definition (Expectation value). The expectation value E[g(X)] of any function g(X) of the
random variable X is defined as

E[g(x)] =

∫
x∈D

g(x)f(x) dx . (1.20)

For discrete distributions, the integral is replaced by a sum so that

E[g(X)] =
∑
i

f(xi)g(xi) =
∑
xi

pig(xi). (1.21)

The expectation value has the following properties:

1. if a ∈ R, then E[a] = a,

2. for any a ∈ R, E[ag(x)] = aE[g(x)],

3. if g(x) = s(x) + t(x), then E[g(x)] = E[s(x)] + E[t(x)].

Definition (Mean). The mean is the expectation value of the random variable and is given by

µ := E[x] =

∫
x∈D

xf(x) dx . (1.22)

Definition (Mode). The mode of a distribution is the value of the random variable x at which
the distribution has its maximum value. There may be multiple modes.

Definition (Median). The median of a distribution is the value of the random variable at which
the cumulative distribution has value 1/2.

Definition (Upper and lower quartiles). Given a cumulative distribution F (x), the upper and
lower quartiles qu and ql are defined such that

F (qu) =
3

4
F (ql) =

1

4
.

Definition (Percentile). The nth percentile, Pn, of a distribution f(x) is given in terms of the
cumulative distribution F (x) as follows:

F (Pn) =
n

100
.
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Definition (Variance). The variance, V [x], of a distribution f(x) is defined as

V [x] := E[(x− µ)2] =

∫
x∈D

(x− µ)2f(x) dx . (1.23)

For a discrete distribution, we have

V [x] =
∑
i

pi(xi − µ)2. (1.24)

Note that the variance is a strictly positive quantity, since the integrand is always positive. It
equals zero if and only if the probability of the mean is one.

Definition (Standard deviation). The standard deviation, σ is defined as the positive square
root of the variance,

σ :=
√
V [x]. (1.25)

The standard deviation gives a measure of how spread out the distribution is around the mean.

Proposition (Chebyshev’s inequality). The upper limit on the probability that random variable
x takes values outside a given range centred on the mean is given by

Pr(|x− µ| ≥ c) ≤ σ2

c2
, (1.26)

for any c > 0.

Proof. First, we note that the probability is given by the integral

Pr(|x− µ| ≥ c) =

∫
|x−µ|≥c

f(x) dx .

Now, since the integrand in equation (1.23) is strictly positive, we have

σ2 ≥
∫
|x−µ|≥c

(x− µ)2f(x) dx ≥ c2
∫
|x−µ|≥c

f(x) dx = c2 Pr(|x− µ| ≥ c).

The result follows.

Definition (Moments). The kth moment of a distribution is defined as

µk := E[xk] =

∫
x∈D

xkf(x) dx . (1.27)

Note that the mean is also the first moment.

Proposition. The variance, mean and the second moment of a distribution is related by

V [x] = E[x2]− E[x]2 = µ2 − µ2
1.

Proof. The variance is given by

V [x] = E[(x− µ)2] =

∫
f(x)(x2 + µ2 − 2µx) dx = µ2 − µ2

1 .

Definition (Central moment). The kth central moment of a distribution is defined by

νk := E[(x− µ)k] =

∫
x∈D

(x− µ)2f(x) dx . (1.28)

We see that ν1 = 0 and ν2 = σ2.
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Definition (Normalized central moments). The normalized or standardized moment of degree
k is defined as

γk :=
νk
σk
. (1.29)

Definition (Skewness). The skewness of a distribution is equal to γ3. It equals zero if the
distribution is symmetric about its mean, it is negative if the distribution is skewed to values of
x less than the mean, and positive otherwise.

Definition (Curtosis). The curtosis of a distribution is given by γ4. The curtosis of a Gaussian
distribution is 3. So, we define excess curtosis as γ4 − 3. A positive value of the excess kurtosis
implies a relatively narrower peak and wider wings than the Gaussian distribution with the
same mean and variance. A negative excess kurtosis implies a wider peak and shorter wings.

1.7 Important discrete distributions

1.7.1 The binomial distribution

The binomial distribution describes processes with two possible outcomes, A and B = A. We
call these success and failure respectively.

Given Pr(A) = p, we deduce Pr(B) = 1−p. If we perform n trials, then the discrete random
variable

X = the number of times A occurs,

is described by the binomial distribution. So let’s derive it.
The probability of obtaining k successes and n− k failures, in that order is simply

pk(1− p)n−k.

This is a single permutation. Since we do not care about the ordering, the number of different
ways we can obtain k successes is given by the combination C(n, k). Hence, the probability of
obtaining k successes from n trials, with success rate p is given by

Pr(X = k) =
n!

k!(n− k)!
pk(1− p)n−k = B(k; p, n). (1.30)

This is the binomial distribution. Now, let’s look at some of its properties.
Notice that the distribution is normalized, since

n∑
k=0

f(k) =
n∑
k=0

C(n, k)pk(1− p)n−k = (p+ (1− p))n = 1.

The first moment of the binomial distribution is given by

µ = E[k] =

n∑
k=0

kC(n, k)pk(1− p)n−k = np.

The variance is
σ2 = V [k] = np(1− p) =⇒ σ =

√
np(1− p)

1.7.2 Multinomial distributions

Instead of two outcomes, we can consider multiple. In that case, we can simply apply the
binomial distribution multiple times - sort of.

Consider the case of 3 outcomes, the generalization to n outcomes is trivial. Let the three
outcomes have probabilities p1, p2, p3 respectively. What is the probability that out of n trials,
we get k1 of outcome 1 and k2 of outcome 2?

10
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Firstly, note that we must have k3 ≡ n− k1 − k2 of outcome 3. Then, the probability for a
single permutation is simply

pk11 × p
k2
2 × p

k3
3 .

The question is, how many combinations are there? We can start by choosing k1 from n and
then k2 from n− k1. Equivalently, we can start by choosing k3 out of n and k2 from n− k3, the
order does not matter. The expression is

C(n, k1)× C(n− k1, k2) =
n!

k1!(n− k1)!
× (n− k1)!

(k2)!(k3)!
=

n!

(k1)!(k2)!(k3)!
.

Hence, the multinomial distribution for n outcomes is

M(ki; pi, n) = n!
∏
i

pkii
ki!

. (1.31)

1.7.3 Geometric and negative binomial distributions

We obtain the geometric distribution if we consider, as the random variable,

X = number of trials required to obtain the first success.

The probability that k trials are required to obtain the first success is

Pr(X = k) = (1− p)k−1p,

and this is the geometric distribution.
Another random variable to consider is

X = number of failures before the rth success.

This yields the negative binomial distribution. What is the probability that X = k? We must
have r − 1 successes and k failures, the number of ways to have this is simply C(k + r − 1, k).
The probability for a single permutation is pr(1− p)k. Hence, the distribution is

Pr(X = k) = C(k + r − 1, k)pr(1− p)k =
(k + r − 1)!

k!(r − 1)!
pr(1− p)k.

1.7.4 Hypergeometric distribution

So far, we have considered independent trials. What happens if we sample without replacement?
Consider drawing a random set of balls from a bag containing M red and N−M white balls.

What is the probability of drawing k red balls out of n draws? Now, notice that the problem
is different since we are reducing the number of balls in the bag by drawing them. The random
variable is

X = number of red balls drawn.

How many ways are there for drawing k red balls from a set of M? This is given by C(M,k).
Now, how many ways can we draw n − k white balls from a set of N − M? Again, it is
C(N −M,n − k). The total number of ways to draw n balls is given by C(N,n). Hence, the
probability distribution is

Pr(X = k) =
C(M,k)C(N −M,n− k)

C(N,n)
=

(Np)!(Nq)!n!(N − n)!

x!(Np− x)!(n− x)!(Nq − n+ x)!N !

where p ≡M/N and q ≡ 1− p. This is the hypergeometric distribution.
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1.7.5 Poisson distribution

The Poisson distribution describes the probability that exactly k events will occur in a given
interval given a mean occurrence µ.

We treat the occurrence of an event as success, in which case it becomes obvious that we
can use the binomial distribution. However, we cannot quantify the trial number n, since now
we have a fixed average µ. We can take the limit as n→∞, with np→ µ.

We start by letting p = µ/n, and take the limit as n→∞.

lim
n→∞

B(k;µ/n, n) = lim
n→∞

(µ/n)k(1− µ/n)n−kn!

k!(n− k)!
.

In the limit, we have

n!

(n− k)!
= n× (n− 1)× . . .× (n− k + 1)→ nk.

Also,

lim
n→∞

(1− µ/n)n−k = lim
n→∞

(1− µ/n)n = lim
n→∞

n∑
i=0

(1)n−i
(
−µ
n

)i n!

(n− i)!(i)!

= lim
n→∞

n∑
i=0

(
−µ
n

)i ni
(i)!

=

∞∑
i=0

(−µ)i

(i)!
= e−µ.

Hence, we can evaluate the limit:

lim
n→∞

(µ/N)k(1− µ/n)n−kn!

k!(n− k)!
=
µke−µ

k!
≡ P (k;µ). (1.32)

This is the Poisson distribution.
We may check for normalization as follows:

1 ≡ e−µeµ =

∞∑
k=0

µk

k!
e−µ =

∞∑
k=0

P (k;µ).

The mean is given by

E[x] =
∞∑
x=0

xP (x;µ) =
∞∑
x=0

xµxe−µ

x!

= e−µ
∞∑
x=1

µx−1µ

(x− 1)!

= µe−µeµ = µ.

For the variance, it is easiest to calculate the second moment.

E[x2] =

∞∑
x=0

x2µxe−µ

x!
= µe−µ

∞∑
x=1

µx−1

(x− 1)!
(x− 1 + 1)

= µe−µ

( ∞∑
x=2

µx−2µ

(x− 2)!
+

∞∑
x=1

µx−1

(x− 1)!

)
= µe−µ (µeµ + eµ) = µ2 + µ.

The variance is then given by
V [x] = E[x2]− E[x]2 = µ.

12
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1.8 Important continuous distributions

1.8.1 Uniform distribution

The uniform distribution describes a continuous random variable that has a constant PDF over
its interval. If x ∈ [a, b], then the uniform distribution is given by

f(x) =

{
1/(b− a), a ≤ x ≤ b,
0 otherwise.

. (1.33)

It is obviously normalized. The mean is given by

µ = E[x] =

∫ b

a

xdx

(b− a)
=

b2 − a2

2(b− a)
=
a+ b

2
,

as we would expect. The second moment is given by

E[x2] =
1

b− a

∫ b

a

x2 dx =
a2 + b2 + ab

3
.

Hence, the variance is

V [x] = E[x2]− E[x]2 =
(a− b)2

12
.

The standard deviation is

σ =
b− a
2
√

3
.

1.8.2 Exponential distribution

The exponential distribution describes the length of intervals between Poisson events, or equiv-
alently, the distribution of the interval before the first event. So, let’s derive it!

What is the probability that the first event occurs in the interval [x, x+ dx ]? This is given
by the probability that no events occur until x, times the probability that one event occurs in
the interval. The probability that no events occur until x is

P (0;λx) =
(λx)0e−λx

0!
= e−λx

where λ is the rate of occurrence. The probability that one event will occur in interval [x, x+ dx ]
is

P (1;λdx ) =
(λ dx )1e−λ dx

1!
= λ dx .

Hence, the probability that the first event occurs in the interval [x, x+ dx ] is

λe−λx dx ≡ f(x) dx ,

where f(x) is the exponential distribution. It is normalized:∫
x∈D

f(x) dx =

∫ ∞
0

λe−λx dx = 1,

where we note that the domain of x is [0,∞). The mean is given by

µ = E[x] =

∫ ∞
0

xλe−λx dx =
1

λ
.

The second moment is

E[x2] =

∫ ∞
0

x2λe−λx dx =
2

λ2
.

Therefore, the variance and the standard deviation are

V [x] =
1

λ2
, σ =

1

λ
.

13
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1.8.3 Gamma distribution

We may generalize the exponential distribution to consider the interval between every rth Poisson
events, or the interval until the rth Poisson event.

The probability that r − 1 events occur until x, given a rate λ, is

P (r − 1;λx) =
(λx)r−1e−λx

(r − 1)!
.

The probability that an event will occur in the interval [x, x + dx ] is λ dx , so the probability
that the rth event will occur at x is

λ dxP (r − 1;λx) = λ dx
(λx)r−1e−λx

(r − 1)!
= f(x) dx ,

where f(x) is the gamma distribution of order r with parameter λ.
The mean and the variance are

E[x] =
r

λ
, V [x] =

r

λ2
.

1.8.4 Gaussian distribution

This is the most important distribution, due to the central limit theorem. The Gaussian proba-
bility density for the random variable x, with mean µ and standard deviation σ is

G(x;µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2

, (1.34)

where x ∈ R. The factors in front ensure it is normalised∫ ∞
−∞

G(x;µ, σ) dx = 1, ∀ µ, σ.

Notice that changing µ simply shifts the curve along the x-axis, and changing σ broadens or
narrows the curve. So, it may be more convenient to consider the standard form by defining a
random variable Z = (x− µ)/σ - called the standard score. In that case, dx = σ dZ , therefore

G(Z) =
1√
2π

e−Z
2/2,

which is the standard Gaussian distribution.
We define the cumulative probability density for a Gaussian distribution as

F (u) = Pr(x < u) =
1

σ
√

2π

∫ u

−∞
e−(x−µ)

2/2σ2

dx . (1.35)

This integral cannot be evaluated analytically. We use tables of values of the cumulative prob-
ability function for the standard Gaussian distribution:

Φ(z) = Pr(Z < z) =
1√
2π

∫ z

−∞
e−Z

2/2 dZ . (1.36)

We may also use the error function, defined as

erf(x) =
2√
π

∫ x

0

e−u
2

du . (1.37)
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1.9 The central limit theorem

The central limit theorem states that the average of N independent random variables will tend
to have a Gaussian PDF as N gets large. Note that the probability densities of the individual
random variables does not matter!

Theorem (Central limit theorem). Let {x1, x2, . . . , xN} be N independent random variables
with probability densities ρi(x). Define a new random variable X such that

X :=

∑N
i=1 xi
N

is the mean of the xi. The central limit theorem states that the random variable X has the
following properties:

(i) its expectation value is given by E[X] = (
∑
i µi)/N ,

(ii) its variance is given by V [X] =
∑
i σ

2
i /N

2,

(iii) as n→∞, the probability density of X tends to a Gaussian with corresponding mean and
variance.

The first two statements are straightforward to prove, the second one requiring xi to be in-
dependent. The last statement is the most important, and can be proven by considering the
moment generating functions.
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