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1 Introduction, Recap and Background

1.1 The Schrödinger Equation

Definition (The Schrödinger Equation). The time-dependent Schrödinger equation for a par-
ticle of mass m in a potential V : R3 → R is given by:

i~
∂ψ(rrr, t)

∂t
= − ~2

2m
∇2ψ(rrr, t) + V (rrr)ψ(rrr, t) = Ĥψ(rrr, t), (1.1)

where ψ : R4 → C is the wavefunction.

Definition (Wavefunction). The wavefunction is defined so that the probability of finding a
particle in volume Ω ⊆ R3 at time t is

P (rrr ∈ Ω) =

∫
Ω

dΩ |ψ(rrr, t)|2 . (1.2)

Corollary (Normalization). Equation (1.2) implies the normalization condition:∫
R3

dΩ |ψ(rrr, t)|2 = 1 ∀t ∈ R. (1.3)

If the potential function is time independent, then equation (1.1) can be separated in position
and time to yield an eigenvalue problem. The general solution is then given by

ψ(rrr, t) =
∑
n

un(rrr)e−iEnt/~, (1.4)

where un(rrr) is a solution to the time-independent Schrödinger equation.

Definition (Time-independent Schrödinger Equation). The TISE is an eigenvalue equation of
the following form:

− ~2

2m
∇2u(rrr) + V (rrr)u(rrr) = Enu(rrr). (1.5)

The eigenvalues En are discrete if the boundaries of the problem are finite, continuous if they
are infinite.

1.2 Solutions to the Schrödinger Equation

1.2.1 Free particle

For a free particle, the equation reduces to the wave equation with the solution

ψ(rrr, t) =

∫
A(kkk) exp i(kkk · rrr − ωt)d3kkk,

where |kkk| =
√

2mE/~2.

1.2.2 Infinite square well

The solutions are sines and cosines satisfying the boundary conditions. We have quantised
energy and wavenumber:

kn =
nπ

2a
, n ∈ Z,

En =
~2k2

n

2m
.

where 2a is the width of the well. The results generalise to higher dimensions.
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2 The Finite Square Well (1-D)

Define the potential to be

V (x) = −V0 for |x| ≤ a, V (x) = 0 for |x| > a

for a (positive) constant V0.

2.1 Unbound states

If E > 0, the solutions are oscillatory in all space. There is no energy quantisation.

2.2 Bound states

If −V0 < E < 0, the solutions are bound. Inside the well, we have

d2u

dx2
+ k2u = 0,

and on the outside
d2u

dx2
− γ2u = 0

where

k =

√
2m (E + V0)

~
, γ =

√
−2mE

~
.

Solving the equations and imposing boundary conditions (continuous u and u′) leads to two
relationships between γ and k. These relations come from treating even and odd parity solutions
separately. This is justified since the potential is even, a solution must be either even or odd.

Even parity:
γ = k tan(ka).

Odd parity:
γ = −k cot(ka)

Using the expressions for k and γ in terms of the energy, we obtain conditions for energy.

2.3 Energy values

It can be shown that

γ2 + k2 =
2mV0

~2

γ =

√
2mV0

~2
− k2.

The expression for γ above is independent of a, and the expressions involving tangents and
cotangents were independent of V0. This means on γ-k axis, the expressions can be plotted and
the solutions will be the intersections.

2.4 Comparison with the infinite square well

It can be shown that in the limit V0 →∞, the solutions converge to an infinite square well.

3 Potential Step and Barrier

Simple to solve step. Barrier is more algebra but conceptually as simple. I will only state the
results.
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3.1 Potential step

The potential is defined as: V = 0 for x < 0 and V = V0 for x > 0.
Case 1: E < V0.

r =

(
k − iγ
k + iγ

)
,

t =

(
2k

k + iγ

)
,

where

k =

√
2mE

~
, γ =

√
2m (V0 − E)

~
.

Case 2: E > V0

r =

(
kL − kR
kL + kR

)
,

t =

(
2kL

kL + kR

)
,

where

kL =

√
2mE

~
, kR =

√
2m (E − V0)

~
.

The transmission and reflection amplitudes can be used to find transmission and reflection
coefficients as follows:

R = |r|2 =
(kL − kR)

2

(kL + kR)
2 < 1

T =
4k2
L

(kL + kR)
2

kR
kL

=
4kLkR

(kL + kR)
2 ,

where for the transmission coefficient the ratio of the fluxes was used (as the wavenumbers are
different).

3.2 Potential barrier

We can define a barrier potential as: V = 0 for x < 0 and x > w, V = V0 for 0 < x < w.
The critical result is that for large γ, i.e. for E � V0, then the transmission coefficient goes

as
T ∼ e−2γw.

4 The Simple Harmonic Oscillator

The normalised energy eigenstates in terms of Hermite polynomials are given by:

un(y) =
(mω
π~

)1/4 1√
2nn!

Hn(y)e−y
2/2.

The solution is obtained by asymtotic analysis, followed by variation of parameters and a series
solution to the resulting simplified equation.
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5 Postulates of QM

Postulate 1. For every dynamical system, there exists a wavefunction that is a continuous,
square-integrable, single valued function of the parameters of the system and of time and from
which all possible predictions about the physical properties of the system can be obtained.

6 Hermitian Operators

Postulate 2. Every dynamical variable may be represented by an Hermitian operator whose
eigenvalues represent the possible results of carrying out a measurement of the value of the
dynamical variable. Immediately after such a measurement, the wavefunction of the system
will be identical to the eigenstate corresponding to the eigenvalue obtained as a result of the
measurement.

Definition (Hermitian operator). An operator Q̂ is said to be Hermitian if it is equal to its
Hermitian conjugate. This can be stated as:

〈φ|Q|ψ〉 = 〈ψ|Q|φ〉 ∀ |φ〉, |ψ〉 ∈ H.

Corollary (Real eigenvalues). It follows from the definition of an Hermitian operator that its
eigenvalues must be real.

Corollary (Orthogonal eigenstates). Assuming the eigenvalues are not degenerate, it can be
shown that the eigenstates of Hermitian operators are orthogonal.

Postulate 3. The operators representing the position and momentum of a particle are x and
−i~d/dx respectively. Operators representing other dynamical variables bear the same func-
tion relation to these as do the corresponding classical quantities to the classical position and
momentum variables.

7 Complete Orthonormal Sets

Any Hermitian operator forms a self-adjoint eigenvalue problem. By extension, the set of or-
thogonal eigenstates are complete. Then, any function can be represented as a sum of the
eigenstates as

ψ =
∑
n

cnφn.

The coefficients cn are given by

cn =

∫
φnψdx.

This can be written in Dirac notation as:

|ψ〉 =
∑
n

|φn〉〈φn|ψ〉.

We state that |cn|2 is the probability that a measurement of the physical quantity related to the
Hermitian operator would give the eigenvalue of the nth eigenstate.

Postulate 4. When a measurement of a dynamic variable represented by a Hermitian operator
is carried out on a system whose wavefunction is ψ, then the probability of the result being equal
to a particular eigenvalue λn will be |cn|2, where ψ =

∑
n cnφn and the φn are the eigenstates

of the operator corresponding to the λn.
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8 Time Dependence

Postulate 5. Between measurements, the development of the wavefunction with time is gov-
erned by the time-dependent Schrödinger equation.

Corollary. If the future wavefunction only depends on the initial condition, i.e. on the eigen-
state of the measured eigenvalue, then it cannot have any dependence on what the wavefunction
was before the collapse. Hence, any wavefunction which could have given the measured eigen-
value may have existed before, but this information is completely lost. Hence, the previous
wavefunction is in general “forgotten”, along with any properties it may have had.

8.1 TDSE solutions

We know that energy eigenstates evolve as un(x)e−iEnt/~, so the time evolution of a general
solution has the form

ψ(x, t) =
∑
n

anun(x)e−iEnt/~.

Since the wavefunction evolves with time, the expansion coefficients can be considered as a
function of time. We can rewrite the expression above as

ψ(x, t) =
∑
n

(
ane
−iEnt/~

)
un(x) =

∑
n

an(t)un(x)

The probabilities for measuring the energy values are time-independent, since

Pn(t) = |an(t)|2 = |an(0)|2 eiEnt/~e−iEnt/~ = |an(0)|2 = Pn(0).

8.2 Measurements with time dependence

Suppose we measure the momentum of a state at time t = 0. The wavefunction collapses to the
momentum state corresponding to the result of our measurement, such that

φmeasured(x) = ψ(x, t = 0) =
∑
n

bnun(x)

for some coefficients bn. Now suppose we let the wavefunction evolve for some time and measure
the momentum again at time t = t1. The wavefunction at t = t1 is given by

ψ(x, t1) =
∑
n

bnun(x)e−iEnt1/~.

We can represent this in terms of momentum states:

ψ(x, t1) =
∑
p

cpφp(x),

where the coefficients cp are given by

cp =

∫
φp(x)ψ(x, t1)dx.

In general, several of the cp will be non-zero, so the momentum is uncertain even though it
follows from a previous momentum measurement.
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9 Commutators and Anticommutators

Definition (Commutator). Given two operators Q̂ and P̂ , the commutator is an operator de-
fined by [

Q̂, P̂
]

= Q̂P̂ − P̂ Q̂.

Corollary. It is trivial to show the following properties of commutators, ∀ Q̂, P̂ we have[
Q̂, P̂

]
= −

[
Q̂, P̂

]
,[

Q̂, Q̂
]

= 0,[
Q̂m, Q̂n

]
= 0, n,m ∈ N.

Definition (Commuting operators). Operators that have a commutator which is zero are said
to commute.

Definition (Conjugate operators). Operators that have a commutator which is i~ are said to
be conjugate variables.

The commutator of x̂ and p̂ is
[x̂, p̂] = i~.

Note that as the commutator is on the order of ~, in the classical limit it tends to zero.

9.1 Hermitian combinations

Proposition. The commutator of two Hermitian operators is anti-Hermitian.

Let Q̂ and P̂ be two Hermitian operators. Then, for any |ψ〉, |φ〉 ∈ H, we have the following
relations:

〈φ|Q̂P̂ |ψ〉 = 〈P̂ Q̂φ|ψ〉, 〈φ|P̂ Q̂|ψ〉 = 〈Q̂P̂φ|ψ〉.
Hence, subtracting

〈φ|[Q̂, P̂ |ψ〉 = 〈[P̂ , Q̂]φ|ψ〉 = −〈[Q̂, P̂ ]φ|ψ〉.
Therefore, we conclude [Q̂, P̂ ] is anti-Hermitian.

Since the commutator is anti-Hermitian, it cannot represent a physical variable. However,
we can convert any anti-Hermitian operator to a Hermitian operator by multiplying by i. This
is easy to show, let R̂ be an anti-Hermitian operator. Then, we have for all |ψ〉, |φ〉 ∈ H

〈φ|iR̂ψ〉 = i〈φ|R̂ψ〉 = −i〈R̂φ|ψ〉 = 〈iR̂φ|ψ〉.

This means i times the commutator of two observables can itself correspond to an observable.

Definition (Anticommutator). Given two operators Q̂ and P̂ , the anticommutator is defined
as {

Q̂, P̂
}

= Q̂P̂ + P̂ Q̂.

It is easy to show that {
Q̂, P̂

}
=
{
P̂ , Q̂

}
and {

Q̂, Q̂
}

= 2Q̂.

Similarly, it can be shown that the anticommutator of Hermitian operators is also Hermitian.
Finally, we can write the product of two operators in terms of commutators and anticom-

mutators as follows:

Q̂P̂ =
1

2

{
Q̂, P̂

}
+
[
Q̂, P̂

]
/.
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9.2 Further examples

We look at the commutator of momentum and Hamiltonian. We know Ĥ = T̂ + V̂ so[
Ĥ, p̂

]
=
[
T̂ , p̂

]
+
[
V̂ , p̂

]
.

The first is [
T̂ , p̂

]
=

1

2m

[
p̂2, p̂

]
= 0.

It is also straightforward to show that [
V̂ , p̂

]
= i~

dV

dx
.

Hence, [
Ĥ, p̂

]
= i~

dV

dx
.

The commutator of the Hamiltonian with position is[
Ĥ, x̂

]
=
[
T̂ , x̂

]
= − i~

m
p̂.

10 Compatibility, Expectation Values, Dirac Notation

Definition (Compatible observables). Two observables are called compatible if they share a
common set of eigenstates.

One example is the free particle Hamiltonian and momentum, where plane waves are eigen-
states of both.

If two operators Q̂ and P̂ have a common set of eigenstates phin, then we can express any
state as

ψ =
∑
n

anφn.

Then, we have for Q̂P̂ acting on ψ

Q̂P̂ψ =
∑
n

anqnpnφn =
∑

anpnqnφn = P̂ Q̂ψ

where rn, qn ∈ C. Therefore, we have for any two compatible observables[
Q̂, P̂

]
= 0.

It is also easy to show, assuming no degeneracies, that if the commutator of two operators is
zero, they must be compatible.

10.1 Expectation values

Definition (Expectation value). The expectation value of an observable Q̂, denoted 〈Q̂〉ψ is
given by

〈ψ|Q̂|ψ〉,
where |ψ〉 ∈ H.

Expanding |ψ〉 in an orthonormal basis of eigenvectors of Q̂ yields

〈Q̂〉ψ =
∑
n

qn|cn|2

where qn are eigenvalues of Q̂.
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10.2 Dirac notation

This courses treatment of Dirac’s formulation of QM is just shameful. I will include some
definitions from David Skinner’s “Principle of QM” notes.

Definition (Ket). Dirac denotes an element of H as |ψ〉, where the symbol “| 〉” is known as
a ket.

Definition (Bra). An element of the dual space is written 〈φ|, where the symbol “〈 |” is known
as a bra.

The relation between the ket |φ〉 ∈ H and the bra 〈φ| ∈ H∗ is the same as φ vs (φ, ). The
ket is a vector, whereas a bra is a functional.

Expanding a general state |ψ〉 as an integral

|ψ〉 =

∫
R
ψ(x′)|x′〉dx′,

we see that the complex coefficients are

〈x|ψ〉 =

∫
R
ψ(x′)〈x|x′〉dx′ = ψ(x).

In other words, the position space wavefunctions are nothing but the coefficients of a state
|ψ〉 ∈ H in a position continuum basis.

11 The Ehrenfest Theorem

It can be shown that the time derivative of the expectation value of an operator Q̂ is

d〈Q̂〉
dt

=
i

~
〈[Ĥ, Q̂]〉

where Ĥ is the Hamiltonian. Now, we can look at the time dependences of position and mo-
mentum operators. Using the commutation relations, we get

d〈x〉
dt

=
i

~

〈
− i~p̂
m

〉
=
〈p̂〉
m
,

for position, and
d〈p〉
dt

=
i

~

〈(
i~
dV

dx

)〉
= −

〈
dV

dx

〉
for momentum. This leads us to the Ehrenfest theorem: The equations of motion for the
expectation values of observables are identical to the equations of motion for their classical
counterparts.

11.1 Conserved variables

The condition for an observable associated with Q̂ to be conserved is that its expectation value
must be constant in time, in other words

〈[Ĥ, Q̂]〉ψ = 0.

There are two cases under which this is satisfied. Firstly, it is satisfied for all Q̂ when the
wavefunction is an energy eigenstate - this is why energy eigenstates are stationary states. This
case is state dependent.

The more interesting case is if the commutator of Q̂ and Ĥ is zero. Then, the expectation
value is constant for all states.
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12 Measurement Spread

Definition (Rms deviation). We define the rms deviation ∆ψQ̂ of Q̂ from its mean 〈Q̂〉ψ in
state |ψ〉 as

(∆ψQ̂)2 = 〈ψ|(Q̂− 〈Q̂〉ψ)2|ψ〉

It is straightforward to show that the definition above reduces to

(∆ψQ̂)2 = 〈Q̂2〉ψ − 〈Q̂〉2ψ.

12.1 The difference operator

Definition (The difference operator). It is convenient to deal with a difference operator, defined
given an operator Q̂ and a state |ψ〉 as

Q̂′ψ = Q̂− 〈Q̂〉ψ

Proposition. The difference operator of a Hermitian operator is also Hermitian.

Proof. Since the expectation value term is just a real number, the proposition holds trivially.

13 The Uncertainty Principle

Definition (Cauchy-Schwarz inequality). Given |ψ〉, |φ〉 ∈ H, the Cauchy-Schwarz inequality
states that

‖|ψ〉‖2‖|φ〉‖2 ≥ |〈ψ|φ〉|2.

We now make use of the difference operators. Since they are Hermitian, we have for all
|ψ〉 ∈ H

(∆ψQ̂)2 = 〈ψ|Q̂′ψ|ψ〉 = 〈Q̂′ψψ|Q̂′ψψ〉 = ‖|Q̂′ψψ〉‖2.

Let Q̂ and R̂ be two Hermitian operators. Then, we have

∆ψQ̂
2∆ψR̂

2 ≥
∣∣∣〈ψ|Q̂′ψR̂′ψ|ψ〉∣∣∣2 .

Now, we write Q̂′ψR̂
′
ψ as

Q̂′ψR̂
′
ψ =

1

2

(
[Q̂′ψ, R̂

′
ψ] + {Q̂′ψ, R̂′ψ}

)
.

The inequality now becomes

∆ψQ̂
2∆ψR̂

2 ≥ 1

4

∣∣∣∣〈[Q̂′ψ, R̂
′
ψ]
〉
ψ

+
〈
{Q̂′ψ, R̂′ψ}

〉
ψ

∣∣∣∣2 .
We would like to make use of the fact that the expectation values of Hermitian operators are
real, to simplfy the expression above. The anti-commutator of two Hermitian operators is
Hermitian, whereas the commutator of two Hermitian operators is anti-Hermitian. We make
the commutator Hermitian by multiplying by i, hence the inequality becomes

∆ψQ̂
2∆ψR̂

2 ≥ 1

4

∣∣∣∣−i〈i[Q̂′ψ, R̂′ψ]
〉
ψ

+
〈
{Q̂′ψ, R̂′ψ}

〉
ψ

∣∣∣∣2
=

1

4

(〈
i[Q̂′ψ, R̂

′
ψ]
〉2

ψ
+
〈
{Q̂′ψ, R̂′ψ}

〉2

ψ

)
.
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Rewriting in terms of Q̂ and R̂ yields〈
[Q̂′ψ, R̂

′
ψ]
〉
ψ

=
〈

[Q̂, R̂]
〉
ψ

and 〈
{Q̂′ψ, R̂′ψ}

〉
ψ

=
〈
{Q̂, R̂}

〉
ψ
− 2〈Q̂〉ψ〈R̂〉ψ.

Hence, we get the general form for the Heisenberg Uncertainty Principle:

∆ψQ̂
2∆ψR̂

2 ≥

(〈
1

2
{Q̂, R̂}

〉
ψ

− 〈Q̂〉ψ〈R̂〉ψ

)2

+

〈
i

2
[Q̂, R̂]

〉2

ψ

.

It is important to make the following distinction between the two terms: the first term depends
on the expectation values of the operators, which depends on the state ψ whereas the second
term only depends on the commutator of the two operators which is independent of the state
(if the commutator is a constant, which it is for position and momentum). Therefore, we can
equally write the uncertainty principle ignoring the first term (since it is strictly positive, it is
mathematically allowed) to obtain:

∆ψQ̂∆ψR̂ ≥
〈
i

2
[Q̂, R̂]

〉
ψ

.

14 Continuous Eigenvalues

This section again follows from David Skinner’s “Principles of Quantum Mechanics” notes.
Given a complete orthonormal basis {|ea〉} of H, we can expand a general ket |ψ〉 as

|ψ〉 =
∑
a

ψa|ea〉

in terms of this basis. Then 〈χ|ψ〉 =
∑
a,b χbψa〈eb|ea〉 =

∑
a χaψa as usual.

It’s very useful to extend this idea to function spaces. In this case, we introduce a ‘continuum
basis’ with elements |a〉 labelled by a continuous variable a, normalised so that

〈a′|a〉 = δ (a′ − a)

using the Dirac delta-function. Then we write

|ψ〉 =

∫
ψ(a)|a〉da

to expand a general |ψ〉 in terms of the |a〉’s. The point of the normalization is that

〈χ|ψ〉 =

∫
χ(b)ψ(a)〈b|a〉dbda =

∫
χ(b)ψ(a)δ(b− a)dbda =

∫
χ(a)ψ(a)da

which is the inner product we defined.
A key example of a ‘continuum basis’ is the position basis {|x〉}, where x ∈ R. Expanding a

general state as an integral

|ψ〉 =

∫
R
ψ (x′) |x′〉dx′

we see that the complex coefficients are

〈x|ψ〉 =

∫
R
ψ (x′) 〈x|x′〉dx′ = ψ(x).

12



The position space wavefunctions are coefficients of a state |ψ〉 ∈ H in position continuum basis.
We could choose to expand the same vector in any basis. For example, we can expand in

the momentum basis as |ψ〉 =
∫
R ψ̃(p)|p〉dp where the new coefficients ψ̃(p) = 〈p|ψ〉 are the

momentum space wavefunction. Given that 〈x|p〉 = eixp/~/
√

2π~ so these two sets of coefficients
are related by

ψ(x) = 〈x|ψ〉 =

∫
R̃
ψ̃(p)〈x|p〉dp =

1√
2π~

∫
R̃

eixp/~ψ̃(p)dp

ψ̃(p) = 〈p|ψ〉 =

∫
R
ψ(x)〈p|x〉dx =

1√
2π~

∫
R

e−ixp/~ψ(x)dx.

This is just the statement that the position and momentum space wavefunctions are each other’s
Fourier transforms.

15 QnA Lecture

16 Representations and Ladder Operators

16.1 Representations

In the momentum representation, we take p̂ = p, and to find x̂ we use the commutator. The
commutators are representation independent, so

[x̂, p̂] = i~

is always true. Therefore

x̂ = i~
d

dp
.

The momentum eigenstates are
δ(pm − p)

and the position eigenstates are
1√
2π~

eipx/~

16.2 SHO ladder operators

We define the ladder operators as

â =

√
mω0

2~
x̂+ i

√
1

2m~ω0
p̂, â† =

√
mω0

2~
x̂− i

√
1

2m~ω0
p̂.

They are not Hermitian, so they do not correspond to observables. We have

[
â, â†

]
= 1,

{
â, â†

}
=

2Ĥ

~ω0
.

We can write the Hamiltonian as

Ĥ = ~ω0

(
â†â+

1

2

)
= ~ω0

(
ââ† − 1

2

)
=

~ω0

2

(
â†â+ ââ†

)
It can be shown, from the commutator of â with Ĥ, that

Ĥ (âun) = (En − ~ω0) (âun) .

13



Hence âun is an eigenstate of Ĥ with energy En − ~ω0. The operator â is called a lowering
operator. Similarly,

Ĥ
(
â†un

)
= (En + ~ω0)

(
â†un

)
so â† is called a raising operator. We then must have

âu0 = 0

so we have

0 = â†âu0 =

(
Ĥ

~ω0
− 1

2

)
u0 =

(
E0

~ω0
− 1

2

)
u0

hence

E0 =
~ω0

2
.

We can solve for u0 and obtain the set of eigenstates for the harmonic oscillator by applying the
raising operator on the ground state.

17 Time Independent Perturbation Theory

The treatment of perturbation theory in Pritchard’s notes is a joke. This section will be based
on David Skinner’s notes.

17.1 Analytic expansion

Let Ĥ be the Hamiltonian of the system we wish to understand, and Ĥ0 be the Hamiltonian of
our model system whose eigenstates and eigenvalues we already know. We hope that ∆̂ = Ĥ−Ĥ0

is in some sense ‘small’. For some λ ∈ [0, 1], we define

Ĥλ = Ĥ0 + λ∆̂.

At λ = 0, the system is our model case, and at λ = 1, it’s the system we are interested in.
We now seek the eigenstates |Eλ〉 of Ĥλ. Our key assumption is that since Ĥλ depends

analytically on λ, so too do its eigenstates. In essence, this amounts to the assumption that
small changes in the system will lead to small changes in the outcome.

If |Eλ〉 depends analytically on λ, then we can expand it as

|Eλ〉 = |α〉+ λ|β〉+ λ2|γ〉+ · · ·

for some |α〉, · · · ∈ H, and similarly expand the eigenvalues

E(λ) = E(0) + λE(1) + λ2E(2) + · · · .

Plugging these into the equation Ĥλ|Eλ〉 = E(λ)|Eλ〉 gives(
Ĥ0 + λ∆̂

)
(|α〉+ λ|β〉+ λ2|γ〉+ · · · )

=
(
E(0) + λE(1) + λ2E(2) + · · ·

)
(|α〉+ λ|β〉+ λ2|γ〉+ · · · ).

Since we require this to hold as λ varies, it must hold for each power of λ. Hence, we get

Ĥ0|α〉 = E(0)|α〉
Ĥ0|β〉+ ∆̂|α〉 = E(0)|β〉+ E(1)|α〉
Ĥ0|γ〉+ ∆̂|β〉 = E(0)|γ〉+ E(1)|β〉+ E(0)|γ〉

...

14



and so on.
λ0: This equation states that |α〉 is an eigenstate of our model system, with energy E(0). To

state this, we relabel |α〉 → |n〉 and E(0) → En where n stands for the nth eigenstate.
λ1: To find E(1), we operate on the second equation with 〈n|:

〈n|H0|β〉+ 〈n|∆|n〉 = En〈n|β〉+ E(1),

since H0 is Hermitian,
E(1)
n = 〈n|∆|n〉.

To find the perturbed state, we expand |β〉 in the complete set {|n〉} of eigenstates of the original
system as

|β〉 =
∑
n

〈n|β〉|n〉.

Now, operating with 〈m| (where m 6= n) gives

〈m|β〉 =
〈m|∆|n〉
En − Em

.

Hence, we get for |β〉

|β〉 =
∑
m6=n

〈m|∆|n〉
En − Em

|m〉

We can argue that when m = n, the expansion coefficient is zero from the requirement that
|Eλ〉 remains normalised.

We can go for higher orders but we won’t (because the course is essentially QM for dummies?)

18 QM in Two Dimensions

It is easy to generalise to three dimensions.

18.1 Two dimensional SHO

The energy eigenstate equation is

Ĥu =

[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+
mω2

xx
2

2
+
mω2

yy
2

2

]
u = Eu.

Separation of variables, we let
u(x, y) = X(x)Y (y)

so the equation becomes(
− ~2

2m

1

X

d2X

dx2
+
mω2

xx
2

2

)
+

(
− ~2

2m

1

Y

d2Y

dy2
+
mω2

yy
2

2

)
= E

Hence, we get

− ~2

2m

d2X

dx2
+
mω2

xx
2

2
X = ExX

and similarly for y where E = Ex + Ey. We know the eigenvalues:

Ex =

(
nx +

1

2

)
~ωx, Ey =

(
ny +

1

2

)
~ωy

and the eigenstate is:
unxny = unx(x)uny (y).
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18.2 Degeneracy

There can be multiple eigenstates that correspond to the same energy. This is called degeneracy,
and happens for the SHO case above for the following general condition:

nx −mx =
ωy
ωx

(my − ny)

where nx, ny,mx,my ∈ N are the quantum numbers describing the two states.
If ωx = ωy = ω, then we have a central potential

V (x, y) =
mω2

xx
2

2
+
mω2

yy
2

2
=
mω2

0

(
x2 + y2

)
2

=
mω2

0r
2

2
= V (r)

and so the energies are given by

E = Ex + Ey = (nx + ny + 1) ~ω0.

There are now two first excited states, given by nx = 1, ny = 0 and nx = 0, ny = 1 both of
which have E = 2~ω0.

Let u10 and u01 be the two degenerate states. Consider the superposition

ψ = αu10 + βu01

for some constants α, β, hence we have

Ĥψ = αĤu10 + βĤu01 = αE1u10 + βE1u01 = E1 (αu10 + βu01) = E1ψ.

Any superposition of degenerate eigenstates is also a degenerate eigenstate.

18.3 Angular momentum

In two dimensions,
L̂ = x̂p̂y − ŷp̂x.

We can look at this in polar coordinates, where

L̂ = −i~ ∂

∂φ
.

We can find eigenstates of angular momentum from the eigenstate equation:

−i~∂ψ
∂φ

= ~mlψ

where we wrote the eigenvalue as ~ml for convenience. Solving the equation yields

ψ = C(r)eimlφ

From the boundary condition ψ(r, φ+2π) = ψ(r, φ), we conclude ml ∈ Z. So angular momentum
must be quantized.

19 Degeneracy

19.1 Orthogonality

When we proved that the eigenstates of any Hermitian operator are orthogonal, we assumed
distinct eigenvalues. However, this assumption does not always hold when there are degeneracies
involved.

We can use Gram-Schmidt process to construct an orthogonal basis out of degenerate eigen-
states.

16



19.1.1 Gram-Schmidt process for degenerate eigenstates

Let {|ψi〉|i = 1, 2, · · · , n} be a set of n degenerate eigenstates. We note that any linear com-
bination of degenerate eigenstates is itself an eigenstate with the same energy. We label the
orthogonal states as |ψ′i〉.

First, we let
|ψ′1〉 = |ψ1〉.

Now, let |ψ′2〉 = c1|ψ1〉+ c2|ψ2〉. We require 〈ψ′1|ψ′2〉 = 0, hence we get

c1〈ψ1|ψ1〉+ c2〈ψ1|ψ2〉 = 0

and so

|ψ′2〉 = c2

(
|ψ2〉 −

〈ψ1|ψ2〉|ψ1〉
〈ψ1|ψ1〉

)
.

We then repeat the same procedure for the remaining states. The arbitrary constants can be
fixed by normalisation.

19.2 Compatibility

We showed that if two operators were compatible, they commuted and vice versa. The proof
of this, however, assumed no degeneracies. When there are degenerate states involved, there
is no guarantee that a particular degenerate state will be an eigenstate of another commuting
operator. However, we can always construct another degenerate state as the set of degenerate
states are complete in the subspace they span, such that said state will be an eigenstate of a
commuting operator.

Hence, a commutator being zero is still a good test of the possibility of compatibility, but
any given set of degenerate eigenstates may not exhibit it directly.

19.3 Collapse

In general, we won’t collapse the wavefunction completely by doing a single measurement when
degenerate states are involved. As we have two quantum numbers that describe our system,
we would need two measurements to know exactly which state the wavefunction is in. In three
dimensions, there are three quantum numbers and so we would need three measurements.

19.4 Symmetry

If the potential has a symmetry, then there is no reason for the probability density to be
asymmetric when considering all the possible solutions. We find that while the probability
densities of each of the degenerate eigenstates do not (necessarily) reflect the symmetry of the
system, the sum of them does. In three dimensions, then∑

|unlm(r)|2

will show the symmetry of the system, where the sum is over all the orthogonal degenerate
eigenstates of a particular energy.

20 Properties of 3D Angular Momentum Operators

The angular momentum operator is found from Postulate 3:

L̂ = r̂× p̂.
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Explicitly in Cartesians
L̂x = ŷp̂z − ẑp̂y
L̂y = ẑp̂x − x̂p̂z
L̂z = x̂p̂y − ŷp̂x

.

We should consider if the angular momentum operators are compatible. Consider[
L̂x, L̂y

]
= L̂xL̂y − L̂yL̂x.

It is straightforward to show that[
L̂x, L̂y

]
= i~L̂z,

[
L̂y, L̂z

]
= i~L̂x,

[
L̂z, L̂x

]
= i~L̂y.

Hence the angular momentum operators for orthogonal bases are not compatible. At most only
one of the Li can have a definite value at a given time.

The commutation relations can be written as

i~L̂ = L̂× L̂.

20.1 Angular momentum magnitude

Consider
L̂2 = L̂ · L̂

It can be shown that this commutes with the L̂i. Hence, the total angular momentum is com-
patible with the angular momentum components, whereas the components are not compatible
with each other. This means that we require there to be degeneracies.

21 Eigenvalues of Angular Momentum

This section is bit useless, ladder operators for angular momentum are introduced.

21.1 Angular momentum ladder operators

We will consider an eigenstate of L̂2 and L̂z, denoted Y (θ, φ) such that we have

L̂2Y = αY, L̂zY = βY.

Definition (Angular momentum ladders). We define the ladder operators for angular momen-
tum as

L̂+ = L̂x + iL̂y, L̂− = L̂x − iL̂y.
We have the commutator relations:

[L̂z, L̂+] = ~L̂+, [L̂z, L̂−] = −~L̂−.

It can then be shown that

L̂z

(
L̂+Y

)
= β

(
L̂+Y

)
+ ~

(
L̂+Y

)
= (β + ~)

(
L̂+Y

)
and similarly

L̂z

(
L̂−Y

)
= (β − ~)

(
L̂−Y

)
.

Hence, the angular momentum in Lz is quantized in units of ~. It is trivial to show that the
ladder operators commute with L̂2 and so they do not change the total angular momentum.
They rotate the angular momentum to increment or decrement the z component.
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21.2 Eigenvalues

By operating on the maximum and minimum z-component of angular momentum states with
the ladder operators, eigenvalues of L̂z can be obtained as

β = ml~, ml = 0,±1,±2, . . .± l

for some l ∈ N+ and the eigenvalues of α is then

l(l + 1)~2.

22 Angular Momentum in Spherical Polar Coordinates

The angular momentum operators in spherical coordinates are:

L̂x = −i~
(
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)
L̂y = −i~

(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
L̂z = −i~ ∂

∂φ

from which it can be shown that the L̂2 operator is

L̂2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
We would like to solve the eigenvalue equation

L̂2Y (θ, φ) = αY (θ, φ).

This can be reduced to associated Legendre equation, and the solutions are

P
|ml|
l =

(
1− µ2

)|ml|/2 d
|ml|P 0

l

dµ|ml|
,

where µ = cos θ, and the general solution is given by

Yl,ml
(θ, φ) = AP

|ml|
l (cos θ)eimlφ

for some constant A. These functions are called the spherical harmonics.

22.1 Properties of spherical harmonics

They are orthonormal, i.e. ∫ π

0

∫ 2π

0

Y ∗lml
Yl′m′

l
sin θdθdφ = δll′δmlm′

l
.

They are also isotropic when all the degenerate states are summed:

ml=+l∑
ml=−l

|Ylml
|2 =

2l + 1

4π

such that it is not a function of θ or φ.
The wavefunction is ψ(r, θ, φ), which can be written as

ψ = f(r)Ylml
(θ, φ)

The spherical harmonics form a complete orthonormal set, hence every angular momentum state
can be represented as a sum of the spherical harmonics.
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23 Central Potentials

23.1 Classical effective potential

Assume that a classical particle is traveling in a certain trajectory in a central potential (so
V (r) = V (r)). We know angular momentum is conserved, and writing the linear momentum as
a sum of its radial and transverse components we get

L = r× p = r× (pR + pT ).

Since the radial component of momentum is by definition parallel to position, we have

L = r× pT .

We also know that, by definition, the transverse component of linear momentum is perpendicular
to r, hence we deduce

|L| = |r||pT |, p2
T =

L2

r2

The total energy is

E =
p2

2m
+ V (r) =

p2
R

2m
+
p2
T

2m
+ V (r)

and so

E =
p2
R

2m
+

L2

2mr2
+ V (r) =

p2
R

2m
+ V ′(r)

where we define an effective potential

V ′(r) = V (r) +
L2

2mr2
.

23.2 3D energy eigenstates

The TISE is [
− ~2

2m
∇2 + V (r)

]
u(r) = Eu(r).

The Laplacian is

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
where the angular term can be written in terms of L̂2 as

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

(
− 1

~2
L̂2

)
= ∇2

R −
1

r2~2
L̂2.

Hence we get for the Hamiltonian

Ĥ = − ~2

2m
∇2 + V (r) = − ~2

2m
∇2
R +

1

2mr2
L̂2 + V (r),

so we get a term similar to the classical case.
As L̂2 only operates on θ and φ, it is conserved if it commutes with V (r) which suggests

that V must be a central potential.
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23.3 The radial equation

We look for solutions of the form

u(r) = R(r)Yl,ml
(θ, φ)

as we know for central potentials L̂2 commutes with the Hamiltonian. Hence, we have

− ~2

2mr2

d

dr

(
r2 dR

dr

)
+
l(l + 1)~2

2mr2
R+ V (r)R = ER.

By the substitution χ(r) = rR(r) we can rewrite this as

− ~2

2m

d2χ

dr2
+

[
V (r) +

l(l + 1)~2

2mr2

]
χ = Eχ

which is simply a one dimensional TISE with an effective potential

V ′(r) = V (r) +
l(l + 1)~2

2mr2
.

As expected, the radial equation does not depend on ml as the potential is central so it is
isotropic.

23.4 Coulomb potential

We have for a single electron orbiting a charged nucleus

V (r) = − Ze2

4πε0r
.

The radial functions are often expressed in terms of the Bohr radius

a0 =
4πε0~2

me2
= 5.3× 10−11m.

The solutions have the form

Rnl(r) = fnl(r) exp

(
− Zr

na0

)
where n is an integer n > l and is called the principal quantum number, l is the angular
momentum quantum number and fnl(r) is a polynomial with terms up to rn−1.

The energy eigenvalues are

En = − me4

2 (4πε0)
2 ~2n2

= − e2

4πε0a0

1

2n2
= −13.6

n2
eV.

It turns out that for the particular case of the Coulomb potential, the energy eigenvalues are
independent of l and only depend on n; this is surprising given what we found before and is
not a general result for central potentials. It is a so-called “accidental degeneracy”. Because of
this, there is generally a high degree of degeneracy for each energy state. Generally there are
n2 degenerate states for energy En
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24 Measuring Angular Momentum

24.1 Classical magnetic dipoles

By considering an electron’s orbit, we can obtain an expression for its magnetic dipole moment
as

µ = − e

2me
L.

This dipole moment interacts with external magnetic fields. If the field is uniform, then the
dipole feels a torque

τ = µ×B

This can be described by a potential energy term

Vµ = −µ ·B.

In a non-uniform field, there will also be a net force on the dipole given by

F = −∇Vµ = ∇(µ ·B).

24.2 The Zeeman effect

Energy shifts in the atomic spectra can be measured when a uniform magnetic field is applied.
This can be used to measure the magnetic dipole moment and hence the angular momentum.

We need to know the effect of the change to the potential on the atomic energy eigenvalues.
This can be determined using perturbation theory. The extra part of the Hamiltonian is

∆̂ = −µ̂ ·B,

defining the z axis to point along the magnetic field we have

∆̂ =
eB

2me
L̂z =

µBB

~
L̂)z

where µB = e~/2me is the Bohr magneton.
The first order perturbation is

E(1) = 〈∆̂〉 =
µBB

~
〈L̂z〉.

Hence, different L̂z states will split into different energy levels depending on their ml values.
The magnetic field breaks the isotropy, so the states are no longer degenerate. We therefore
expect to see each set of degenerate L̂2 states split into the 2l+ 1 separate L̂z states, in energy
steps of µBB.

The ground state of hydrogen has only l = 0 so we expect no shift to the energy levels there.
The first excited state has l = 0 or 1 and so we would expect the l = 0 and l = 1, ml = 0 states
to not be shifted, while the l = 1, ml = ±1 states will move up or down in energy, respectively.
However, this was not observed; the ground state actually split into two energies, moving ±µBB
while the first excited state split into four energies. This was known as the anomalous Zeeman
effect.

24.3 The Stern-Gerlach experiment

Using a non-uniform magnetic field, a force can be applied to atoms that depends on their
angular momentum orientation. This force will therefore deflect a beam of atoms depending
on the value of ml. Classically, for a fixed µ magnitude, we would expect a continuous range
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of µz values as the atoms would generally have random orientations to the z axis and hence
a continuous range of deflections. However, the experiment first done by Stern and Gerlach
showed only particular deflections were found; this is a direct manifestation of the quantisation
of angular momentum. Again, we would expect hydrogen atoms not to be deflected in their
ground state, as l = 0, and the first excited state to be split, with ml = ±1 being deflected in
different directions while the two ml = 0 states are not deflected at all. However, it was found
that the ground state gave two lines, corresponding to the deflections expected for ml = ±1.
The initial conclusion was that they were somehow seeing the ml = ±1 states and the ml = 0
states were “missing” in some undefined way.

24.4 Spin

These effect can be explained by electrons having some intrinsic angular momentum - called
spin. Then we have two sources of magnetic dipole, one corresponding to the electron’s orbit
and hence its angular momentum, and the other being an intrinsic property. We have

µS = − ge

2me
S,

where g is some proportionality constant called the “gyromagnetic ratio”. It turns out that
g = 2, so we take

µS = − e

me
S.

The electron is said to have “spin-half”, with s = 1/2 and ms = ±1/2.

25 Spin Eigenvalues and Eigenstates

25.1 Spin in QM

We cannot construct Ŝi from spatial and momentum operators. Since we need to add it to
orbital angular momentum, we want it to act like orbital angular momentum.

Proposition. The commutator rules for spin operators are the same as for L̂i, e.g. [Ŝx, Ŝy] =

i~Ŝz.

We can deduce the eigenvalues via ladder operators, so we have

Ŝ2χ = s(s+ 1)~2χ, Ŝzχ = ms~χ.

As we are restricted to a single s value, s = 1/2, and two ms values we need to have χ to be
discrete. For only two ms values, we need something which only takes two values. We can write
it as a vector

χ =

(
χ1

χ2

)
.

Then, we use matrices to represent spin operators. In order to include the spin in the wavefunc-
tion, we then have

ψ(x, y, z, w) =

[
ψ1(x, y, z)
ψ2(x, y, z)

]
where w ∈ {1, 2}.
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25.2 Spin z

We take

Ŝz =

(
~/2 0
0 −~/2

)
=

~
2

(
1 0
0 −1

)
,

so it can be deduced that

αz = χ+ =

(
1
0

)
βz = χ− =

(
0
1

)
It is easy to see that these vectors form a complete orthonormal set.

25.3 Other spin operators

The raising and lowering operators can be deduced as

Ŝ+ = ~
(

0 1
0 0

)
, Ŝ− = ~

(
0 0
1 0

)
.

Using the raising and lowering operators, we can then find Ŝx and Ŝ−. These are

Ŝx =
~
2

(
0 1
1 0

)
, Ŝy =

~
2

(
0 −i
i 0

)
.

We can define Pauli matrices as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

25.4 Spin magnitude

We define Ŝ2 as

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

~2

4
I +

~2

4
I +

~2

4
I =

3~2

4
I.

Hence the operator is the identity, so any vector is an eigenvector with an eigenvalue 3~2/4.

25.5 Eigenvectors of Ŝx̂Sx̂Sx and ŜŷSŷSy

It is straightforward to show that

αx =
1√
2

(
1
1

)
, βx =

1√
2

(
1
−1

)
and similarly

αy =
1√
2

(
1
i

)
, βy =

1√
2

(
1
−i

)
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26 Spin in Magnetic Fields

26.1 The wavefunction with spin

With spin, the general Hamiltonian will be

Ĥ(r,p, Ŝ).

The eigenstates will generally be

ψ =

(
ψ1(r, t)
ψ2(r, t)

)
so in general we have two coupled differential equations to solve, one for ψ1 and one for ψ2.

If the spatial and spin components of the Hamiltonian are separate terms, such that

Ĥ = Ĥr(r̂, p̂) + Ĥs(Ŝ)

then we have a separable solution of the form

ψ = ψr(r, t)χs(t)

Then we have two separate TDSEs

i~
∂ψr
∂t

= Ĥrψr

i~
dχs
dt

= Ĥsχs

To clarify the form of ĤS we can write

i~
d

dt

(
χ1

χ2

)
= ĤS

(
χ1

χ2

)
so it is clear that ĤS has to be a 2× 2 matrix.

26.2 Spin in a uniform magnetic field

If the magnetic field is uniform, B 6= B(r), then the potential due to the dipole is a separate
term. This means we can separate the spin component of the Hamiltonian such that

ĤS = −µS ·B =
e

me
S ·B.

Defining the z axis to be along the magnetic field, we have

Ĥs =
eB

me
Ŝz =

e~B
2me

σz = µBB

(
1 0
0 −1

)
in terms of the Bohr magneton µB . We have two eigenstates that are also Ŝz eigenstates, with
energies ±µBB.

26.3 Larmor precession

Larmor precession concerns the motion of the spin vector in a magnetic field. We can solve the
TDSE

i~
d

dt

(
χ1

χ2

)
= µBB

(
χ1

−χ2

)
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so that
χ1 = a1e

−iE1t/~ = a1e
−iµBBt/~, χ2 = a2e

−iE2t/~ = a2e
iµBBt/~.

The spin vector is then given by

χs = a1u1e−iµBBt/~ + a2u2eiµBBt/~

We can calculate the expectation values as

〈Si〉(t) = χ†sŜiχs

Putting in the three matrices gives

〈Sx〉 = ~a1a2 cos (2µBBt/~)

〈Sy〉 = ~a1a2 sin (2µBBt/~)

〈Sz〉 =
~
2

(
a2

1 − a2
2

)
Hence, the expectation value of Sz is constant with time, as would be expected since the energy
eigenstates are also Ŝz eigenstates. However, the Sx and Sy expectation values precess around
the magnetic field direction with an angular frequency 2µbB/~ = eB/me.
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