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Chapter 1

Basics

(c = 1)

1.1 Postulates

Definition 1. A reference frame is a system of coordinates (labels) which associates a position
~x and a time t for every point in spacetime.

Definition 2. A frame of reference in which a free body moves with constant velocity is said
to be inertial.

It follows that if two reference frames move uniformly relative to each other, and if one of
them is inertial then so is the other one. Now, we state two experimental facts which we call
the postulates of relativity.

Postulate 1. The laws of physics are the same in all inertial frames.

Postulate 2. The speed of light in vacuum is the same in all inertial frames.

1.2 Interval

Definition 3. An event is a point in space time.

We now express the second postulate in a mathematical form. Consider two events P1 and
P2, connected by a light beam. Let S be an inertial frame, in which the events have coordinates

P1 = (t1, ~x1), P2 = (t2, ~x2).

Since the two events are connected by a light beam, we have

|~x2 − ~x1|2 = (t2 − t1)2.

We write this in the form

(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 = 0.

Let S ′ be another inertial frame. By postulate two, we immediately have

(t′2 − t′1)2 − (x′2 − x′1)2 − (y′2 − y′1)2 − (z′2 − z′1)2 = 0.

This motivates us to define an interval.
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Chapter 1 1.2. Interval

Definition 4. Given an inertial frame S and two events with coordinates (t1, ~x1), (t2, ~x2) the
interval between them is defined as

s12 =
[
(t2 − t1)2 − (~x2 − ~x1)2

] 1
2 . (1.1)

Note that, by the second postulate, if in any given inertial frame the interval is zero, it must
be zero in every inertial frame:

s = 0⇐⇒ s′ = 0. (1.2)

1.2.1 Invariance of the interval

We will now prove that the interval between any two events is invariant between inertial frames.
But first, we need to show that inertial frames must be related to each other by linear transfor-
mations. From now on, we denote coordinates by the convention

(t, x, y, z) −→ (x0, x1, x2, x3) −→ xµ

with µ = 0, 1, 2, 3. Similarly for frame S ′,

(t′, x′, y′, z′) −→ (x0′
, x1′

, x2′
, x3′

) −→ xµ
′
.

Proposition. The coordinate transformations from an inertial frame to another are linear.

Proof. Let S and S ′ be two inertial frames. Consider an arbitrary clock, reading time τ , mov-
ing at uniformly in frame S. By homogeneity, equal ticks in τ correspond equal intervals in
coordinates (t, ~x). Therefore,

dxµ

dτ
= constant,

d2xµ

dτ2
= 0.

In general, the coordinates of the clock in S ′ is given by some function of the coordinates xµ:

xµ
′

= xµ
′
(x).

By chain rule, we have
dxµ

′

dτ
=
dxµ

dτ

∂xµ
′

∂xµ

and similarly,

d2xµ
′

dτ2
=

d

dτ

[
dxµ

dτ

∂xµ
′

∂xµ

]

=
d2xµ

dτ2︸ ︷︷ ︸
=0

∂xµ
′

∂xµ
+
dxµ

dτ

dxν

dτ

∂2xµ
′

∂xµ∂xν

=
dxµ

dτ

dxν

dτ

∂2xµ
′

∂xµ∂xν
= 0.

Since this must hold for all inertial frames S ′, we must have

∂2xµ
′

∂xµ∂xν
≡ 0,

and so the coordinate transformation xµ
′

= xµ
′
(x) is linear.
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Chapter 1 1.2. Interval

Proposition. Given any two inertial frames S and S ′, the interval between any two events in
S is equal to the interval in S ′.

Proof. Our starting point will be to show that the infinitesimal interval

ds2 = dt2 − dx2 − dy2 − dz2

is of the same order in any two inertial frames. Let’s state this precisely. Consider two arbitrary
inertial frames S and S ′. Suppose we parameterize the interval between two arbitrary points
by some parameter ε (this can be done by parameterizing one of the points), such that

lim
ε→0

s(ε) = 0⇐⇒ lim
ε→0

s′(ε) = 0. (∗)

As ε→ 0, s(ε)→ ds and s′(ε)→ ds′ assuming the two points approach each other in the limit
ε→ 0. Now, the infinitesimal intervals ds and ds′ are of the same order if

lim
ε→0

s(ε)

s′(ε)
= A 6= 0, (∗∗)

meaning they approach zero in same order in ε. Let’s show explicitly that this is the case.
As we are dealing with the interval between two points, we can fix one of the points without

loss of generality. So, let’s define one of the points to be the origin of S and S ′, denoted O.
Now, choose any point in spacetime P and consider some parameterization P(ε) such that

lim
ε→0

P(ε) = O.

Clearly, with such parameterization, we satisfy (∗). In frame S, the point P(ε) will have some
coordinates

P(ε) = (t(ε), ~x(ε)),

where we consider parameterizations such that the functions t(ε) and ~x(ε) are analytic in ε,
which we are allowed to do in a general sense because spacetime does not have gaps in it. Then,
near ε = 0, in general we will have

t(ε) = O(εn), x(ε) = O(εm), y(ε) = O
(
εk
)
, z(ε) = O

(
ε`
)
,

for some n,m, k, ` ≥ 0. It then follows that

s(ε) = O
(
εmin(n,m,k,`)

)
.

We note that if one of the indices, (say k), equals zero, then the condition P(ε → 0) = O can
only be satisfied if the corresponding coordinate (say y), is identically zero. In this case, it does
not contribute to the behaviour of s(ε→ 0). So, when we write min(n,m, k, `) we only consider
the non-zero powers.

Now, since the transformation from xµ → xµ
′

is linear, we can write it as

Jµ
′

µx
µ = xµ

′
.

We know that we are able to invert this coordinate transformation since all inertial frames are
treated on equal footing, hence the determinant of the Jacobian is non-zero. It then follows that
there exists at least one coordinate xµ

′
such that

xµ
′

= O
(
εmin(n,m,k,`)

)
,

and there doesn’t exist any xν
′

such that

xν
′

= O(εp) with p < min(n,m, k, `).
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Chapter 1 1.2. Interval

This is all we need to state that

s′(ε) = O
(
εmin(n,m,k,`)

)
= O(s(ε)).

Therefore, for an arbitrary parameterization which is analytic in the coordinates, (∗∗) is satisfied.
Now, let’s consider a particular parameterization: P(ε) = (εt0, ε~x0) in S. The interval

between P(ε) and O in frame S is

s2(ε) = (εt0)2 − (ε~x0)2 ⇒ lim
ε→0

s2(ε) = dt2 − dx2 − dy2 − dz2 = ds2,

where as ε→ 0, εxµ → dxµ. From (∗∗) we have

ds2 = Ads′
2
.

We don’t know what the coefficient A might be, but since it relates two inertial frames the
only parameters it can depend on are the coordinates xµ, xµ

′
and the relative velocity ~v of the

frames. By homogeneity of space and time, we immediately conclude that there cannot be any
dependence on the coordinates - there are no special points in spacetime. Also, by isotropy
of space it cannot depend on the direction of ~v - space has no preferred direction. Hence we
conclude A = A(v) can only be a function of the magnitude of the relative velocity between
frames S and S ′. Note that by choosing a particular parameterization (path) for P(ε), we
essentially convert any dependence of A on the path parameterized by ε to the coordinates
(t0, ~x0), so don’t have to worry about A depending on the path we take.

Let v be the speed of S relative to S ′. Then,

ds2 = A(v)ds′
2
.

But there is nothing special about frame S, and since A only depends on the relative speed, by
symmetry we must also have

ds′
2

= A(v)ds2.

Together, these imply A(v) ≡ ±1. Considering a third frame moving relative to S and S ′ it
becomes clear that A(v) ≡ 1, hence

ds2 = ds′
2
. (1.3)

Since the infinitesimal intervals are invariant, clearly finite intervals must remain invariant.

1.2.2 Time-like and space-like separations

Two events are said to be timelike separated if their interval is real, meaning ∆s2 > 0. This
immediately implies that there exists an inertial frame in which the two events occur at the
same position, setting ∆x = 0,

∆s2 = ∆t2 −∆x2 = ∆t2 > 0.

Similarly, two events are said to be spacelike if their interval is imaginary, meaning ∆s2 < 0.
Again, it follows that there exists an inertial frame in which the two events happen simultane-
ously, setting ∆t = 0,

∆s2 = ∆t2 −∆x2 = −∆x2 < 0.

Since the interval is invariant, a timelike interval remains timelike in all inertial frames. Similarly,
a spacelike interval remains spacelike. This is
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Chapter 1 1.3. Proper Time

1.3 Proper Time

Imagine a particle, following an arbitrary path xµ(λ) through spacetime. How is the time
measured by the particle related to the time an inertial observer measures?

At any given instant, the particle can be regarded as an inertial frame, in which case it
travels a distance |d~x| in time dt in some reference frame S. Let dτ be the time experienced by
the particle. In the frame of the particle, the displacement is zero since the particle sees itself
at rest, so we have

ds2 = dt2 − dx2 − dy2 − dz2 = dτ2,

from which we obtain

dτ = dt

√
1− d~x2

dt
= dt

√
1− v2,

where v is the velocity of the particle in frame S. If we want to obtain the time experienced by
the particle over some path, we simply integrate this

τ =

∫
λ

dτ =

∫ t(λ)

t(0)

dt
√

1− v2(t).

The time experienced by the moving particle is called the proper time of the particle. It equals
the interval ds in natural units. Furthermore, it is always the less than the time measured by
a different observer. Moving clocks tick slower. As a consequence, since the proper time equals
the interval, we obtain that the maximum value for∫ b

a

ds

is obtained if it is taken along the straight world line joining the two points together.

1.4 Lorentz Transformations

We can obtain transformations which take us from one inertial frame S with coordinates xµ to
another S ′ with coordinates xµ

′
by simply considering the invariant interval. This mathemati-

cally translates to finding the Jacobian matrix Jµ
′

µ . Landau motivates the form of the group
of transformations that leaves the interval invariant (Lorentz group) as follows:

“. . . we may say that the required transformation must leave unchanged all distances in
the x, y, z, t space. But such transformations consist only of parallel displacements, and
rotations of the coordinate system. Of these the displacement of the coordinate system
parallel to itself is of no interest, since it leads only to a shift in the origin of the space
coordinates and a change in the time reference point. Thus the required transformation
must be expressible mathematically as a rotation of the four-dimensional x, y, z, t coordinate
system.

“Every rotation in the four-dimensional space can be resolved into six rotations, in the
planes xy, zy, xz, tx, ty, tz. The first three of these rotations transform only the space
coordinates; they correspond to the usual space rotations.”

So, we expect six transformations in our group, three of which we already now. Let’s consider
a rotation in the tx plane, which corresponds to a boost in the x−direction.

Assuming S and S ′ share their origins, we have a general linear transformation:

t′ = At+Bx,

x′ = Ct+Dx.
(1.4)
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Chapter 1 1.4. Lorentz Transformations

By the invariance of the interval, we must have

s2 = t′
2 − x′2 = t2

(
A2 − C2

)
− x2

(
D2 −B2

)
+ 2xt(AB − CD) = t2 − x2.

⇒ A2 − C2 = 1, D2 −B2 = 1, AB = CD.

The most general solution is given by

A = ± coshψ, B = ± sinhψ, C = ± sinhψ, D = ± coshψ

for some ψ ∈ R. If the two frames are identical, we require x = x′ and t = t′. This immediately
gets rid of two minus signs:

A = coshψ, D = coshψ.

As for the plus and minus ambiguity in B and C, we note that since ψ is arbitrary, we can
absorb the sign into ψ. For now, let’s take B = C = − sinhψ and solve for ψ. So far, we have

t′ = t coshψ − x sinhψ, t = t′ coshψ + x′ sinhψ,
x′ = x coshψ − t sinhψ, x = x′ coshψ + t′ sinhψ.

(∗)

Let S ′ move with velocity v in +x direction in S. As both frames coincide at the origin, we
have

x′ = 0⇐⇒ x = vt.

Substituting this into (∗), we obtain

t = t′ coshψ
vt = t′ sinhψ

⇒ v = tanhψ.

By hyperbolic identities, we have

cosh2 ψ − sinh2 ψ = 1 ⇒ 1− tanh2 ψ =
1

cosh2 ψ
⇒ coshψ =

√
1

1− v2
,

and similarly we have

sinhψ = tanhψ coshψ = v

√
1

1− v2
.

Hence, we obtain the Lorentz transformation for a rotation in the tx plane

t′ = γ(v)(t− vx), t = γ(v)(t′ + vx′),
x′ = γ(v)(x− vt), x = γ(v)(x′ + vt′),

dy′ = dy dy = dy′,
dz′ = dz dz = dz′,

(1.5)

where we defined γ(v) = (1− v2)−
1
2 .

Note that γ(v → 1) diverges. This sets the speed of light as a natural speed limit. Finally,
note that in general, Lorentz transformations do not commute. As they are rotations in the four
dimensional space, the order in which two rotations are performed matters (unless the axis of
rotation remains the same).

1.4.1 Length contraction

Suppose there is a rod in frame S, parallel to the x−axis. Let its length be ` = x2 − x1. We
want to determine the rod’s length in S ′, so we need to measure x′2 and x′1 at the same time t′.
We have

x1 = γ(x′1 + vt′), x2 = γ(x′2 + vt′) ⇒ ` = γ`′.

Since γ > 1, the length `′ in the moving frame is contracted. This is Lorentz contraction.
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Chapter 1 1.4. Lorentz Transformations

1.4.2 Addition of velocities

Suppose S ′ moves with velocity v relative to S along the x direction. Let ~u be the velocity of a
particle in the S and ~u′ be its velocity in S ′. How are the two related? We have

ui =
dxi

dt
, ui

′
=
dxi

′

dt′
.

By (1.5), we have

ux =
dx

dt
=
dx′ + vdt′

dt′ + vdx′
=

u′x + v

1 + vu′x
(1.6)

uy =
dy

dt
=

dy′

γ(dt′ + vdx′)
=

√
1− v2u′y
1 + vu′x

, (1.7)

uz =
dz

dt
=

dz′

γ(dt′ + vdx′)
=

√
1− v2u′z
1 + vu′x

, (1.8)

Now, suppose that the particle moves on the x−y plane such that we can decompose its velocity
into ux = u cos θ and uy = u sin θ. Then, by (1.6) and (1.7) we have

tan θ =
u′
√

1− v2 sin θ′

u′ cos θ′ + v.
(1.9)

This describes the change in the direction of the velocity. Finally, we consider the special case
of the deviation of light from one frame to another. This is called aberration. In this case,
u = u′ = 1, so ux = cos θ and uy = sin θ. From (1.6) and (1.7) we directly obtain

cos θ =
cos θ′ + v

1 + v cos θ′
, sin θ =

sin θ′
√

1− v2

1 + v cos θ′
.

For small v, these reduce to the classical expression θ′ − θ = v sin θ′.

1.4.3 Doppler effect

Suppose we have two inertial frames S ′ and S. Let a light source sit at ~x′ = ~0 emitting light
with wavelength (period) λ′. When an observer sat at ~x = ~0 observes the light beam, what
wavelength λ will he measure? Let’s look at different cases.

Longitudinal

We may imagine two signals, separated in time ∆t′ = λ′ and in space by ∆x′ = 0 in S ′. Now,
we ask: how far apart in time are these two signals observed at x = 0 in S? Let’s break the
whole problem down into four events:

• A1(x = 0, t = t0): the first signal is observed, coordinates given in S.

• A2(x = 0, t = t0 + λ): the second signal is observed, coordinates given in S.

• B′1(x′ = 0, t′ = t′0): first signal is emitted, coordinates given in S ′.

• B′2(x′ = 0, t′ = t′0 + λ′): second signal is emitted, coordinates given in S ′.

To simplify our lives, let’s fix the origins of our coordinates such that t0 = 0 in S and t′0 = 0 in
S ′. Now, let’s write the coordinates of B2 in S:

B2(x2, t2) = (γ(∆x′ + v∆t′), γ(∆t′ + v∆x′)) = (γvλ′, γλ′).
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Chapter 1 1.4. Lorentz Transformations

All we need to do is calculate when a light signal emitted from B2 reaches the t-axis in S. Now,
we have to specify whether the source x′ = 0 lies in the x > 0 or x < 0 region, as this determines
the orientation of the light beam. The choice we make will not matter in the end, as long as
we are consistent. Suppose the source lies on the x > 0 half of the xt plane. Then, the signal
emitted from B2(x2, t2) travels along the line

(x− x2) = −(t− t2),

from which we can read off the time it reaches the observer at x = 0:

t = x2 + t2 = λ′γ(1 + v) = λ′
√

1 + v

1− v
.

Referring back to the point A2, we see that t = λ and so

λ = λ′
√

1 + v

1− v
. (1.10)

Transverse

This is a simpler case. We imagine the light beam traveling along the y axis, perpendicular to
the relative motion of the two frames. Let the source sit at some Y > 0 in the S frame. By the
same construction, we write down the events:

• A1(x, y, t) = (0, 0, t0),

• A2(x, y, t) = (0, 0, t0 + λ),

• B′1(x′, y′, t′) = (0, 0, 0),

• B′2(x′, y′, t′) = (0, 0, λ′).

Now, the first signal takes time to travel a distance Y . So, let’s fix our origin t = 0 such that
we have B1(x, y, t) = (0, Y, 0). This implies t0 = Y . As before, we find B2 in S coordinates:

B2(x2, y2, t2) = (γ(∆x′ + v∆t′), Y, γ(∆t′ + v∆x′)) = (γvλ′, Y, γλ′).

Now, we need to find the time at which a light beam emitted from B2 reaches the t-axis. We
do the approximation: Y � γvλ′. This approximation essentially means we are just looking at
the transverse component. If the y separation of the source and the observer is large enough, we
can simply ignore the distance the source travels in the x direction in one period. So, we solve
the equation for y = 0 :

−(y − Y ) = (t− t2) ⇒ Y = t0 + λ− t2 ⇒ λ = t2 = γλ′.

Hence, we obtain the result

λ = λ′
√

1

1− v2
. (1.11)

General

For the general case, we imagine the source at a distance L away from the observer, at an angle
θ from the x axis, moving along the x axis. The events are

• A1(x, y, t) = (0, 0, t0),

• A2(x, y, t) = (0, 0, t0 + λ),

9



Chapter 1 1.5. Minkowski Space

• B′1(x′, y′, t′) = (0, 0, 0),

• B′2(x′, y′, t′) = (0, 0, λ′).

As before, we first calculate event B1 in S coordinates. Defining t1 = 0, and noting that the
source is a displacement ~x1 = (L cos θ, L sin θ) away from the observer, we obtain:

B1(x1, y1, t1) = (L cos θ, L sin θ, 0).

Now, we can solve for t0 by noticing that the light has to travel a distance L to reach the
observer. Hence, t0 = L and so A1 = (0, 0, L),A2 = (0, 0, L+ λ). Now, we write down B2 in S:

B2(x2, y2, t2) = (γvλ′ + L cos θ, L sin θ, γλ′).

The light emitted from the source travels with velocity ~u = (− cos θ,− sin θ), so the time it takes
to reach the observer is x2 cos θ + y2 sin θ. Hence, the time at which the light beam reaches the
observer is

x2 cos θ + y2 sin θ + t2 = L cos2 θ + γvλ′ cos θ + L sin2 θ + γλ′ = L+ λ′γ(1 + v cos θ).

But, we know from A2 that this time equals L+ λ. Hence we obtain the general result

λ = λ′
1 + v cos θ√

1− v2
. (1.12)

Let’s perform a sanity check. When we set θ = 0, we obtain (1.10). This corresponds to
longitudinal shift. When we set θ = π/2, we obtain (1.11), which corresponds to the transverse
shift. Finally, when v > 0, the source is moving away from the observer, so λ > λ′ and the light
is red-shifted. When v < 0, for θ not too large the light will get blue-shifted. The condition for
blue-shift is

1 + v cos θ√
1− v2

< 1,

where remember that v < 0.

1.5 Minkowski Space

We have been talking about labeling events in space-time by some coordinates xµ. From the
postulates, we motivated an interval and showed its invariance. Now, we consider the more
fundamental concept of geometry. What space are we living in and what are its properties?

Definition 5. Minkowski space is a four-dimensional space with the metric tensor

η =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

. (1.13)

This is called the Minkowski metric.

The form of η is not surprising. To see why, simply look at the only invariant we have: the
interval! We note that given a metric gij and a coordinate system xi, the line element is given
by

ds2 = gijdx
idxj .

We know that line elements are invariant under coordinate transformations. Since Lorentz
transformations are nothing but coordinate transformations of space-time, this motivates us to
define as the line element the square of the interval. The Minkowski metric η then follows when
we identify the coordinates of our space as ~x = (t, ~r).

10



Chapter 1 1.5. Minkowski Space

Lorentz transformations

We know two fundamental properties of Lorentz transformations: they are linear and they leave
the interval invariant. Let’s mathematise these properties.

Definition 6. Lorentz transformations are linear transformations

xµ 7−−→
Λ

xµ = Λµνx
ν , (1.14)

which leave the Minkowski line element invariant:

ds2 ≡ ησρdxσdxρ = ηµνdx
µdxν ≡ ds2. (1.15)

We know dxσ = Λσµdx
µ, so we have

ησρΛ
σ
µΛρν = ηµν ⇔ (Λᵀ) σ

µ ησρΛ
ρ
ν = ηµν . (1.16)

This is not surprising at all. We would expect the covariant metric tensor ηµν to transform as
a covariant tensor - so it does. What is surprising, on the other hand, is a subtlety I glanced
over. Note that when we wrote the line element in the xµ frame, we didn’t use a metric of the
form ηµν . The reason for this is that the metric takes the same form in all inertial frames! This
should be understood as a fundamental constraint on the transformations Λ. These relations
can be written in matrix form:

~x = Λ~x, ΛᵀηΛ = η. (1.17)

Note that Λµν is nothing but the Jacobian associated with the transformations xµ 7−→ xµ.
Since the transformations are linear, points transform with the Jacobian and (1.14) holds. There
are two Lorentz transformations obeying the properties defined above: rotations in space and
Lorentz boosts (rotations in space and time). The two can be written as the matrices:

Λrot =


1 0 0 0
0
0 R
0

, Λx boost =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

. (1.18)

An immediate corollary of equation (1.17) is that

ΛᵀηΛ = η ⇔ η =
(
Λ−1

)ᵀ
ηΛ−1, (1.19)

hence if some Λ is a Lorentz transformation, so is its inverse Λ−1. Furthermore, suppose we
have two Lorentz transformations Λ1 and Λ2. Look at their composition:

(Λ1Λ2)
ᵀ
ηΛ1Λ2 = Λᵀ

2Λᵀ
1ηΛ1Λ2 = Λᵀ

2ηΛ2 = η. (1.20)

So, given any two Lorentz transformations, their composition is also a Lorentz transformation.
These relations make it clear that the Lorentz transformations obey a group structure. The set
of matrices Λ are a representation of the Lorentz group.

Infinitesimal Lorentz transformations

We may write an infinitesimal Lorentz transformation in matrix form as

Λ = (1 + ω)

where 1 is the identity and ω an infinitesimal. Then, from (1.16) it follows that

ΛᵀηΛ = (1 + ω)ᵀη(1 + ω)

= (1 + ωᵀ)η(1 + ω)

= η + ωᵀη + ηω +O
(
ω2
)

= η

Hence, we obtain that (ηω) = −(ηω)ᵀ and so (ηω) is antisymmetric. An immediate corollary is

ωαβ = ηαγω
γ
β = −ηβγωγα = −ωβα. (1.21)

11



Chapter 1 1.5. Minkowski Space

1.5.1 Four-vectors

Now that we have a metric and a group of transformations, we can talk about tensors.

Definition 7. A four-vector ~A is an object in Minkowski space with contravariant components
Aµ which, under a Lorentz transformation Λ, transform as

Aµ = ΛµνA
ν . (1.22)

As usual, the metric η defines a scalar product on the space of four-vectors. The norm of a
four-vector is invariant and is defined by

A2 = ηµνA
µAν = ηµνA

µAν . (1.23)

The scalar product of two four-vectors is again invariant and is given by

~A · ~B = ηµνA
µBν = ηµνA

µBν . (1.24)

Definition 8. A (Lorentz) covector is an object with components Aµ which are related to their
covariant counterparts by

Aµ = ηµνA
ν . (1.25)

This is known as lowering an index. Similarly, multiplying by the inverse metric η−1 yields

Aµ =
(
η−1

)µσ
ησνA

ν =
(
η−1

)µσ
Aσ ≡ ηµσAσ, (1.26)

where we denote the inverse metric by ηµν . The placement of the indices is enough to tell the
difference. Note that the inverse metric, in this case, equals the original metric.

Inverse transformation

Now, we need to clean up a notational mess involving how the inverse Jacobian Λ−1 is written.
Usually, we would denote the Jacobian associated with the transformation xµ −→ xµ as

Jµν =
∂xµ

∂xν
.

Similarly, for the inverse transformation xµ −→ xµ we have

Jµν =
∂xµ

∂xν
.

Note that although we used the same letter J to denote both Jacobians, we have distinguished
between them by barring the inverse. In special relativity, however, there is a common and very
criminal way of notating the inverse transformation. The idea is to make use of equation (1.16)
in the following way:

ησρΛ
σ
µΛρν = ηµν ⇒ ηαµησρΛ

σ
µΛρν = ηαµηµν = δαν .

Now, we commit the crime of raising and lowering the indices of the Jacobian:

ηαµησρΛ
σ
µ ≡ Λ α

ρ .

Jacobians are not tensors and their indices should not be raised and lowered. It just happens
to work in this case. Then, we have

Λ α
ρ Λρν = δαν .

12



Chapter 1 1.5. Minkowski Space

Notice that this is nothing but the statement that Λ α
ρ is the inverse Jacobian:(

Λ−1
)α
ρ
≡ Λ α

ρ .

All we’ve done here is to denote the inverse Jacobian as Λ ν
µ , which is just a convention.

Now we’re in a position to discuss how covariant components transform:

Aµ = ηµνA
ν = ηµνΛναA

α = ηµνΛναη
αβAβ = Λ β

µ Aβ . (1.27)

Hence, covariant component transform with the inverse Jacobian. This extended to any higher
rank tensor: upper indices transform with Λ, lower indices transform with Λ−1:

Tµ1...µn
ν1...νm = Λµ1

α1
. . .Λµn

αn
Λ β1
ν1 . . .Λ βm

νm Tα1...αn

β1...βm
. (1.28)

1.5.2 Curves and tangent vectors

Consider a parameter λ that is monotonically increasing along a path in space-time. We may
mathematize the path by the map λ 7→ xµ(λ). The tangent vector to the path at point x(λ0)
has components

x′µ(λ0) =
d

dλ
xµ(λ)

∣∣∣∣
λ=λ0

. (1.29)

We may write the interval in terms of the tangent vector as

ds2 = ηµνdx
νdxµ = ηµνx

′µx′νdλ2. (1.30)

Since dλ2 > 0, we have the following classifications for the tangent vector at some point λ = λ0

:

ηµνx
′µx′ν =


> 0 timelike,

= 0 lightlike (null),

< 0 spacelike.

(1.31)

Proposition. The classification of the tangent vector is independent of its parameterization.

Proof. Suppose we have a time-like tangent with some parameterization λ. Changing to another
parameterization σ, we have

0 < ηµν
dxµ

dλ

dxν

dλ
= ηµν

dxµ

dσ

dxν

dσ

(
dσ

dλ

)2

.

Since
(
dσ
dλ

)2
> 0, it follows that the tangent is timelike for any parameterization. This generalizes

trivially to spacelike and null tangents.

Definition 9. A curve whose tangent vector is everywhere timelike is called a timelike curve
(and likewise for lightlike and spacelike curves). A curve whose tangent vector is everywhere
timelike or null (i.e. non-spacelike) is called a causal curve.

A natural Lorentz-invariant parameterization of timelike curves is given by the proper time
τ , so that xµ = xµ(τ). We note that this parameterization only makes sense for timelike curves
since the condition dτ > 0 guarantees the parameter τ is monotonically increasing along the
curve. A corollary for tangents is

ηµν
dxµ

dτ

dxν

dτ
≡ ηµν ẋν ẋµ = 1, (1.32)

where we denote derivatives with respect to τ with dots. Because τ is Lorentz invariant, τ = τ ,
tangent vectors ẋµ of τ−parameterized curves transform as four-vectors:

ẋ
µ

=
dxµ

dτ
=

d

dτ
(Λµνx

ν) = Λµν ẋ
ν (1.33)

Finally, we note that spacelike curves are parameterized by −τ , since −dτ > 0.
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Chapter 1 1.5. Minkowski Space

1.5.3 Four-velocity and acceleration

Definition 10. The four-velocity of a massive particle is defined as the tangent vector to the
worldline of the particle, parameterised by proper time:

uµ(τ) ≡ ẋµ(τ). (1.34)

As we’ve seen, this transforms as a four-vector.
As a corollary of the definition, the components of the four-velocity are not independent.

They must obey the relation

dτ2 = ηµν
dxµ

dτ

dxν

dτ
dτ2 = dτ2uµu

µ ⇒ uµu
µ = 1. (1.35)

Definition 11. The four-acceleration is defined similarly to four-velocity

aµ =
duµ

dτ
=
d2xµ

dτ2
. (1.36)

Differentiating (1.35), we obtain the relation

0 =
d

dτ
[uµuµ] = aµuµ + aµu

µ = 2aµuµ. (1.37)

So, ~a and ~u are always “perpendicular”.

As an aside, we may write the four-velocity and four-acceleration in terms of their classical
correspondents

~v =
d~x

dt
, and ~α =

d~v

dt
.

Recall that t = γτ (and t = x0), so we have

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γ

(
1
~v

)
. (1.38)

Similarly, for acceleration we have

aµ =
duµ

dτ
=
dt

dτ

d

dt

(
γ
γ~v

)
= γ

(
αvγ3

αvγ3~v + γ~α

)
(1.39)

where α = |~α|, v = |~v|, and noting that

dγ

dt
= αvγ3.
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Chapter 2

Tensor Algebra

2.1 Manifolds and coordinates

We are interested in tensors, which are object defined on differential manifolds. Basically, an
n−dimensional manifold is something which “locally” looks like Rn. An example is 2−sphere
S2. It is globally different than R2 - it is compact - but locally like R2. As far as we are
concerned, an n−dimensional manifoldM is a set of points such that each point possesses a set
of n coordinates (x1, x2, . . . , xn).

Sometimes, there is no single coordinate system that covers an entire manifold without
degeneracy. Coordinate systems that cover a portion of the manifold are called coordinate
patches. A set of coordinate patches which covers the whole manifold is an atlas.

We are interested in how objects that live in the manifold transform under coordinate trans-
formations from one coordinate patch to another.

2.2 Curves and surfaces

Given a manifold, we can define curves and surfaces. There are two ways of doing so: parametri-
sation and constraints.

A curve is defined parametrically by

xa = xa(u), (a = 1, 2, . . . , n). (2.1)

There is a notational subtlety involved here already: xa on the left hand side corresponds to the
coordinate, whereas xa(·) on the right hand side corresponds to a function xa : I → R where
u ∈ I ⊂ R. This duality between a function and a coordinate being denoted identically will
persist throughout the chapter, and it is something to always keep in mind.

A surface of m < n dimensions has m degrees of freedom, so it depends on m parameters
and is defined, similar to a curve, by

xa = xa(u1, u2, . . . , um), (2.2)

where it is implied that a = 1, 2, . . . , n from context. If m = n − 1, the surface is called a
hypersurface:

xa = xa(u1, u2, . . . , un−1). (2.3)

In this case, the n − 1 parameters can be eliminated from the n equations in (2.3) can be
eliminated to give a single equation:

f(x1, x2, . . . , xn) = 0. (2.4)
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Chapter 2 2.3. Coordinate transformations

This is the constraint form for defining a hypersurface. Similarly, for a surface of m dimensions,
we need n−m constraints:

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

...

fn−m(x1, . . . , xn) = 0.

(2.5)

Example (Sphere in R3). Consider a sphere of radius a, embedded in R3. It has two degrees
of freedom, so we need two parameters to parametrise it. Choosing Cartesian coordinates
(x1, x2, x3) = (x, y, z), (2.2) becomes:

x(θ, φ) = a sin θ cosφ, y(θ, φ) = a sin θ sinφ, z(θ, φ) = a cos θ,

where θ ∈ [0, π] and φ ∈ [0, 2π). Noting that this is a hypersurface, we may write a single
constraint in the form (2.4):

x2 + y2 + z2 = a2 ⇒ f(x, y, z) = x2 + y2 + z2 − a2 = 0.

2.3 Coordinate transformations

The essential point of tensor calculus is that when we make a statement about tensors, we want
it to hold for all coordinate systems. This is sometimes called the tensorial property.

Consider a change of coordinates xa 7→ xa given by

xa = fa(x1, . . . , xn). (2.6)

At this stage, we view coordinate transformations passively as assigning to a point on the
manifold whose old coordinates are (x1, . . . , xn), the new coordinates (x1, . . . , xn). We write
this in a more compact form:

xa = xa(x), (2.7)

where xa denote the n functions fn(x1, . . . , xn).
The Jacobian matrix associated with the transformation (2.7) is

Jab ≡
∂xa

∂xb
=


∂x1

∂x1
∂x1

∂x2 . . . ∂x1

∂xn

∂x2

∂x1
∂x2

∂x2 . . . ∂x2

∂xn

...
...

∂xn

∂x1
∂xn

∂x2 . . . ∂xn

∂xn


a

b

(2.8)

where Jab denotes the transformation matrix associated with x 7→ x and Jab denotes the one
with x 7→ x. The determinant of J is the Jacobian of the transformation x 7→ x:

J =

∣∣∣∣∂xa∂xb

∣∣∣∣.
We will always assume the determinant of Jacobian matrix is non-zero, in which case we can
invert the transformation law (2.7) to obtain

xa = xa(x). (2.9)
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Chapter 2 2.3. Coordinate transformations

From the product rule for determinants, it follows that

J =

∣∣∣∣∂xa∂xb

∣∣∣∣ =
1

J
. (2.10)

From (2.7), we also define the total differential

dxa =
∂xa

∂x1
dx1 + · · ·+ ∂xa

∂xn
dxn =

n∑
b=1

∂xa

∂xb
dxb ≡ ∂xa

∂xb
dxb, (2.11)

where, from now on, we adopt the Einstein summation convention: whenever an index is repeated
up and down, it is summed over. The index a is said to be free and the index b is said to be
dummy. In any tensor expression, the free indices should match on both sides.

We define the Kronecker delta δab as

δab =

{
1 a = b,

0 a 6= b.
(2.12)

It follows that
∂xa

∂xb
=
∂xa

∂xb
= δab . (2.13)

The Kronecker delta is an example of a “numerical (or constant)” tensor - meaning it has the
same components in all coordinate systems. This will become clear later on. For now, we note
an important relation between the transformation matrices:

δab =
∂xa

∂xb
=
∂xa

∂xc
∂xc

∂xb
= JacJ

c
b ⇒ JJ = 1, (2.14)

as we would expect.

Example (Transformation matrices). Consider a coordinate transformation from Cartesian
coordinates (xa) = (x, y, z) to spherical polar coordinates (xa) = (r, θ, φ) in R3. The trans-
formation matrix associated with x 7→ x is

J =

 x/r y/r z/r
x/(r2 tan θ) y/(r2 tan θ) z/(r2 tan θ)− 1/(r sin θ)
−y/(x2 + y2) x(x2 + y2) 0

,
and the transformation matrix of x 7→ x is

J =

 sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

.
2.3.1 Active and passive transformations

Coordinate transformations can be viewed in two ways: active or passive. We need to define
both cases properly to avoid confusion later on.

Let’s first consider a simple example. In a one dimensional manifold, take some function
f(x) = x2. This is the form of the function expressed in x coordinates. Now, consider a simple
transformation: x 7→ x = x+ a, for some constant a. The passive picture tells us f transforms
as follows:

f(x) = x2 = (x− a)2 = f(x).
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What this says is that, as far as the manifold is concerned, the function f did not transform
at all. We simply changed our coordinates. The functional form for f , expressed in the x
coordinates, changed to f to keep the function itself invariant.

In the active picture, instead of changing our coordinates we simply change the objects on
the manifold. In this case, the function f transforms. This is done by relabeling x → x in the
expression above, in which case we obtain

f(x) = (x− a)2.

We think of f(x) as a new function, actively changed with respect to the manifold by the
transformation x 7→ x.

Here is the way I think about it: imagine your manifold is a table, on which there is a sheet
of grid paper. This grid paper represents a particular choice of a coordinate path. Now, we put
a pen, which represents an object defined on the manifold, on the grid paper. A passive transfor-
mation is moving the grid paper, holding the pen fixed on the table. An active transformation
would be moving the pen, holding the grid paper fixed.

2.4 Contravariant tensors

We want to define a geometrical quantity in terms of the transformation properties of its compo-
nents under a coordinate transformation. Let’s start with an example to motivate the definition.

Figure 2.1: Infinitesimal vector at point P.

Consider two points P and Q on the manifold, with coordinates (xa) and (xa + dxa) re-

spectively. The two points define an infinitesimal displacement vector
−−→
PQ. The vector is not

“free”, it is attached to point P. The components of the vector in x−coordinates are dxa, and
in x-coordinates are dxa. The two are related by (2.11):

dxa =
∂xa

∂xb
dxb. (2.15)

The transformation matrix is to be evaluated at point P, so strictly speaking we have

dxa =
∂xa

∂xb

∣∣∣∣
P
dxb, (2.16)

but this will always be implied. This is a linear, homogeneous transformation. With this
motivation, we have the following definition:

Definition 12. A contravariant vector or contravariant tensor of rank 1 is a set of n quantities,
Xa in (xa) coordinates, associated with a point P on the manifold, which transforms under a
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change of coordinates x 7→ x according to

Xa =
∂xa

∂xb
Xb = JabX

b, (2.17)

where ∂xa
/
∂xb is to be evaluated at P.

An example of a contravariant vector is the infinitesimal displacement dxa. A contravariant
vector with finite components is the tangent vector dxa/du to some curve xa(u).

Definition 13. A contravariant tensor of rank 2 is a set of n2 quantities associated with a
point P, denoted T ab in (xa) coordinates, which transforms according to

T ab =
∂xa

∂xc
∂xb

∂xd
T cd = JacJ

b
dT

cd. (2.18)

Higher rank contravariant tensors are defined similarly. An important case is a zero rank
tensor, called a scalar φ, which transforms as

φ = φ (2.19)

at P.
As a side note, a numerical (or constant) tensor is one which has the same components in

every coordinate system. An example is δab , where this follows by definition. We may check
explicitly:

δab =
∂xa

∂xc
∂xd

∂xb
δcd =

∂xa

∂xc
∂xc

∂xb
=
∂xa

∂xb
=

{
1 a = b,

0 a 6= b.

2.5 Covariant and mixed tensors

We again motivate the definitions by example. Consider a real valued function on the manifold

φ :M→ R, x 7→ φ(x). (2.20)

Note that x stands for the collection {xa}. Assuming φ is differentiable, consider the coefficients
∂φ/∂xa . From (2.7), we have φ(x) = φ(x(x)). By chain rule:

∂φ

∂xa
=
∂xb

∂xa
∂φ

∂xb
= Jba

∂φ

∂xb
. (2.21)

This is the transformation law we wanted to motivate.

Definition 14. A covariant vector, or a covariant tensor of rank 1, is a set of quantities, denoted
Xa in (xa) coordinates, associated with a point P, which under coordinate transformation x 7→ x
transforms according to

Xa =
∂xb

∂xa
Xb = JbaXb. (2.22)

Similarly, a covariant tensor of rank 2 is defined by the transformation rule

T ab =
∂xc

∂xa
∂xd

∂xb
Tcd = JcaJ

d
bTcd. (2.23)

Contravariant components have upper, covariant components have lower indices. The fact that
coordinate differentials dxa transform contravariantly is the reason we write the coordinates
themselves as xa rather than xa. Coordinates, in general, are not tensors.

19



Chapter 2 2.6. Tensor fields

We can define mixed tensors similarly. For example, a mixed tensor of rank 3 with one
covariant index and two contravariant indices transforms as

T bc
a =

∂xi

∂xa
∂xb

∂xj
∂xc

∂xk
T jk
i . (2.24)

If a mixed tensor has contravariant rank p and covariant rank q, it is said to be of type (p, q).
Why do we care about tensors and how they transform? Suppose we have a tensor equation

in one coordinate system (xa):
Rab = Sab .

Then, we may multiply both sides by the appropriate transformation matrices to obtain

∂xa

∂xc
∂xd

∂xb
Rcd =

∂xa

∂xc
∂xd

∂xb
Scd ⇔ Rab = Sab. (2.25)

Hence, if a tensor equation holds in coordinate system, it holds in any coordinate system.
This means the mathematical statement we are making with a tensorial equation is intrinsic to
the manifold and not the coordinate patches. Physics cares only about the manifold, not the
coordinates.

2.5.1 Are the transformation matrices tensors?

There is usually confusion, especially in special relativity when we deal with transformation
matrices Λµν , regarding whether these objects are tensors or not. The answer is no. Tensors are
geometric objects, intrinsic to the manifold. Transformation matrices tell us how to get from
one coordinate patch to another. They are not intrinsic to the manifold.

2.6 Tensor fields

A tensor field defined over some region of the manifold is an assignment of a tensor of the same
type to every point in the region. It is called smooth if its components are differentiable to all
orders with respect to the coordinates.

The (passive) transformation law for a contravariant tensor field is

T a(x) =
∂xa

∂xb

∣∣∣∣
(x)

T b(x), (2.26)

where we note that the transformation matrix is evaluated at (x) - for all points on the manifold
where T b(x) is defined. We will often refer to tensor fields as just tensors and omit the evaluation
of the transformation matrix since both will be clear from context.

2.7 Operations with tensors

Proposition. The sum of two tensors of the same type is a tensor of the same type.

Proof. Simply show for a contravariant tensor, generalizes trivially. Let Za = Xa + Y a. Then,
we have

Za = Xa + Y a =
∂xa

∂xb
Xb +

∂xa

∂xb
Y b =

∂xa

∂xb
(
Xb + Y b

)
=
∂xa

∂xb
Za.

Since Za transforms as a contravariant tensor, result follows.

A covariant tensor Tab is said to be symmetric if Tab = Tba. Similar definition holds for
contravariant and mixed tensors of rank 2.
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Proposition. A symmetric tensor has 1
2n(n+ 1) independent components.

Proof. Thought of as a matrix, the upper half must be equal to the lower half. The number of
elements in the upper and lower half is n2 − n - simply subtracting the diagonal. Hence, the
number of independent elements is

n2 − 1

2
(n2 − n) =

1

2
n(n+ 1).

The tensor Tab is said to be antisymmetric or skew-symmetric if Tab = −Tba. An immediate
corollary is that the diagonal components are identically zero. Hence, an antisymmetric tensor
has 1

2n(n− 1) independent components.
We denote the symmetric part of a tensor by

T(ab) ≡
1

2
(Tab + Tba), (2.27)

and the antisymmetric part by

T[ab] ≡
1

2
(Tab − Tba). (2.28)

In general,

T(a1,...,am) ≡
1

m!
× (sum over all permutations of indices),

and

T[a1,...,am] ≡
1

m!
× (alternating sum over all permutations of indices).

For example,

T[abc] =
1

6
(Tabc − Tacb + Tcab − Tbac + Tbca − Tcba). (2.29)

A totally symmetric tensor is a tensor which is equal to its symmetric part. Similarly, a totally
antisymmetric tensor is one that is equal to its antisymmetric part.

Proposition. A tensor symmetric in a particular coordinate system is symmetric in any coor-
dinate system. This means symmetry (or antisymmetry) is an intrinsic property.

Proof. Let Tab = Tba. Then,

T ab =
∂xc

∂xa
∂xd

∂xb
Tcd =

∂xc

∂xa
∂xd

∂xb
Tdc = T ba.

This generalizes to any order tensor.

Proposition. If Xab is antisymmetric and Yab is symmetric, then XabYab ≡ 0.

Proof. Let φ = XabYab. Then

φ = XabYab = −XbaYba = −φ ⇒ φ ≡ 0.

We can multiply two tensors of type (p1, q1) and (p2, q2) to obtain a tensor of type (p1 +
p2, q1 + q2). For example,

Zabc = Xa
bYc. (2.30)

A tensor of type (p, q), when multiplied by a scalar field φ remains a tensor of type (p, q).
Given a mixed tensor of type (p, q), we can form a tensor of type (p−1, q−1) by contraction,

which involves summing over an upper and lower index, e.g.

Xa
bcd 7−→ Xa

acd = Ycd. (2.31)

We can contract a tensor by multiplying it with Kronecker tensor:

Xa
acd = δbaX

a
bcd .
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Chapter 2 2.8. Index-free interpretation of contravariant vector fields

2.8 Index-free interpretation of contravariant vector fields

We must distinguish between the geometric objects that live in a manifold and their components
in particular coordinate systems. Consider a contravariant vector field (similar construction will
hold for general tensor fields.) The key idea is to treat the vector field as on operator which
maps real valued fields onto real valued fields. If V is a vector field, for some f : Rn → R we
have V f = g where g : Rn → R is some other field.

In the (xa) coordinates, we introduce the notation

∂a ≡
∂

∂xa
.

Then, V is defined as the operator
V = V a∂a. (2.32)

Let’s look at how V transforms under coordinate transformation x 7→ x:

V = V a∂a =
∂xa

∂xb
∂xc

∂xa
V b∂c = εcbV

b∂c = V b∂b = V. (2.33)

Hence, vector field V as an operator is invariant. This is why it is geometric.
In any coordinate system, for a given point P on the manifold, we can think of [∂/∂xa]P as

forming a basis for all vectors as P, since any vector at P is given by (2.32)

VP = [V a]P

[
∂

∂xa

]
P
, (2.34)

a linear combination of the [∂/∂xa]P . The vector space of all the contravariant vectors at P is
the tangent space at P, denoted TP(M).

Figure 2.2: The tangent space at P.

In general , the tangent space at any point in a manifold is different from the underlying
manifold. As an example, consider the surface of a sphere. The tangent vector at any point
does not lie on the sphere. Two exceptions to this are Euclidean and Minkowski spaces.

2.9 Lie brackets

Definition 15. Given two vector fields X and Y , we can define a new vector field called the
commutator or Lie bracket of X and Y by

[X,Y ] = XY − Y X. (2.35)
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Chapter 2 2.9. Lie brackets

Letting [X,Y ] = Z and operating with it on some arbitrary function f , we have

Zf = [X,Y ]f

= (XY − Y X)f

= X(Y a∂a)f − Y (Xa∂a)f

= Xb∂b(Y
a∂a)f − Y b∂b(Xa∂a)f

= (Xb∂bY
a)∂af +XbY a∂b∂af − (Y b∂bX

a)∂af − Y bXa∂b∂af

= (Xb∂bY
a − Y b∂bXa)∂af,

where the ∂a∂bf terms cancel assuming partial derivatives commute. Since f is arbitrary, we
obtain the result:

Za = [X,Y ]a = Xb∂bY
a − Y b∂bXa, (2.36)

from which it is clear that Z is a vector field itself.

Corollary. The following results follow from the definition:

1. [X,X] = X2 −X2 ≡ 0.

2. [X,Y ] = XY − Y X = −(Y X −XY ) ≡ −[Y,X].

3. Jacobi’s identity:

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = X(Y Z − ZY )− (Y Z − ZY )X + Z(XY − Y X)

− (XY − Y X)Z + Y (ZX −XZ)− (ZX −XZ)Y

= XY Z −XZY − Y ZX + ZY X + ZXY − ZY X
−XY Z + Y XZ + Y ZX − Y XZ − ZXY +XZY

≡ 0.
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Tensor Calculus

3.1 Partial derivatives of a tensor

We ask which differential operations are tensorial? Let’s first see how the partial derivative of
a tensor, say ∂cA

a, transforms:

∂cA
a =

∂

∂xc

[
∂xa

∂xb
Ab
]

=
∂xd

∂xc
∂

∂xd

[
∂xa

∂xb
Ab
]

=
∂xd

∂xc
∂xa

∂xb
∂dA

b +Ab
∂xd

∂xc
∂2xa

∂xd∂xb
. (3.1)

What a disaster! This, obviously does not transform like a tensor due to the second term. It
is not actually a disaster, in fact there is a fundamental reason why ∂cA

a is not a tensor in
general. By definition, differentiation something involves comparing a quantity evaluated at
two neighbouring points. For instance, for a contravariant vector field we compute

lim
ε→0

[Aa]P − [Aa]Q
ε

where P and Q are separated by some distance ε. However, from the transformation law we
have

[Aa]P =

[
∂xa

∂xb

]
P
AbP , [Aa]Q =

[
∂xa

∂xb

]
Q
AbQ.

This involves the transformation matrix evaluated at different points. This is the reason deriva-
tives of tensor fields, in general, are not tensors.

An immediate corollary of the discussion above is that if the transformations we consider
have transformation matrices that do not depend on the point on the manifold they are evaluated
at, then any derivative of a tensor field with respect to any coordinates is a tensor. This is a
special case which will become clear later.

We will first introduce the Lie derivative, then define affine connection and metric connection
to introduce the covariant derivative.

3.2 Lie derivative

Pay attention, this will be involved.
Let’s start with a motivation. We wish to ‘differentiate’ a tensor field along a curve, meaning

we want the points P and Q to lie on some curve xa(u). Now, instead of defining a set of curves
that cover a portion of the manifold every time we wish to differentiate something, let’s first
look at how we can refer to xa(u) by contravariant vector fields.

Consider a congruence of curves, defined over the manifold such that only one curve goes
through each point. Then, given any one curve xa(u), we can define the tangent vector field
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Chapter 3 3.2. Lie derivative

dxa/du along the curve. If we do this for every curve in the congruence, we obtain a contravariant
vector field Xa(x).

Conversely, given a non-zero vector field Xa(x), we may define a congruence of curves called
the orbits or trajectories of Xa. These curves are obtained by solving

dxa

du
= Xa(x(u)). (3.2)

This is an ODE, so existence and uniqueness theorems ensure there is a unique solution.
That is the first motivation sorted! Now, suppose we want to differentiate some tensor field

T a...b... (x). We already know that if we evaluate this tensor field at different points on the manifold,
the resulting difference will not be a tensor. Our second motivation is to fix that.

The essential idea is to use the congruence of curves to drag the tensor at some point P
along the curve passing through P to the neighbouring point Q. Then, we compare this dragged
along tensor with the original tensor field evaluated at Q. This dragging is done by viewing the
coordinate transformation from P to Q actively.

Consider the transformation

xa 7−→ xa = xa + εXa(x), (3.3)

where ε is small. This is called a point transformation. It sends the point P with coordinates
xa to the point Q with coordinates xa + εXa(x). Since the transformation is viewed actively,
the coordinates of each point are given in the same coordinate system xa.

Note that the point Q, by definition, lies on the curve of congruence of Xa through point P.
Differentiating (3.3) yields

∂xa

∂xb
= δab + ε∂bX

a(x). (3.4)

Now, consider some tensor field T ab. Its components at P are T ab(x) and, under the point
transformation (3.3) they transform as

T ab(x) =
∂xa

∂xc
∂xb

∂xd
T cd(x) = (δac + ε∂cX

a)(δbd + ε∂dX
b)T cd

= T ab + ε[∂cX
a + ∂dX

b]T cd +O
(
ε2
)
,

(3.5)

where note that every T ab and Xa on the right hand side is evaluated at point P with coordinates
x.

T ab(x) is the tensor dragged along from P to Q. We need to compare that with the tensor
already at Q, which we express as T ab(x). This is given by Taylor expanding:

T ab(x) = T ab(xc + εXc) = T ab(x) + εXc∂cT
ab(x) +O

(
ε2
)
. (3.6)
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Chapter 3 3.2. Lie derivative

Now, we are in a position to define the Lie derivative of T ab with respect to Xa, denoted LXT
ab:

LXT
ab(x) = lim

ε→0

T ab(x)− T ab(x)

ε
. (3.7)

We are comparing the tensor field evaluated at Q with the tensor field dragged from P to Q.
By (3.5) and (3.6), we have

LXT
ab = Xc∂cT

ab − T ac∂cXa − T cb∂cXa. (3.8)

This is a particular example for a contravariant tensor of rank two. For a general tensor field
T a...b... , we define the Lie derivative in exactly the same manner:

LXT
a...
b... (x) = lim

ε→0

T a...b... (x)− T a...b... (x)

ε
. (3.9)

Since both tensor fields are evaluated at the same point on the manifold, the Lie derivative
transforms as a tensor.

3.2.1 Properties of the Lie derivative

For all of the following propositions, it will be easier to rewrite (3.9) as

T a...b... (x)− T a...b... (x) = εLXT
a...
b... (x) +O

(
ε2
)
. (3.10)

Proposition. It is linear. Meaning, for any µ, λ constant we have

LX(λY a...b... + µZa...b... ) = λLXY
a...
b... + µLXZ

a...
b... . (3.11)

Proof. By (3.10),

εLX(λY a...b... + µZa...b... ) +O
(
ε2
)

= λY a...b... + µZa...b... − λY a...b... − µZa...b...

= λ
(
Y a...b... − Y a...b...

)
+ µ

(
Za...b... − Za...b...

)
= ε(λLXY

a...
b... + µLXZ

a...
b... ) +O

(
ε2
)
.

Hence, the result follows.

Proposition. It obeys the Leibniz rule for differentials of products:

LX(Y a...b... Z
c...
d...) = Y a...b... (LXZ

c...
d...) + Zc...d...(LXY

a...
b... ). (3.12)

Proof. We have
Y a...b... Z

c...
d... − Y a...b...Z

c...
d... = LX(Y a...b... Z

c...
d...)ε+O

(
ε2
)
, (∗)

and
Y a...b... = Y a...b... − LXY a...b... +O

(
ε2
)
, Zc...d... = Zc...d... − LXZc...d... +O

(
ε2
)
. (∗∗)

Substitute (∗∗) into (∗)

LX(Y a...b... Z
c...
d...)ε+O

(
ε2
)

= Y a...b... Z
c...
d... − (Y a...b... − LXY a...b... )(Zc...d... − LXZc...d...) +O

(
ε2
)

= ε[Y a...b... (LXZ
c...
d...) + Zc...d...(LXY

a...
b... )] +O

(
ε2
)
.

The result follows.

Proposition. It is type preserving, meaning the Lie derivative of a tensor of type (p, q) is again
a tensor of type (p, q). This is inherited from addition and needs no proof.
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Chapter 3 3.2. Lie derivative

Proposition. It commutes with contraction, meaning

δbaLXT
a
b = LXT

a
a . (3.13)

Proof.

δbaLXT
a
b = δba lim

ε→0

T ab − T ab
ε

= lim
ε→0

δba(T ab − T ab)
ε

= lim
ε→0

T aa − T aa
ε

= LXT
a
a .

3.2.2 Lie derivatives of various tensor fields

We’ve seen the Lie derivative of a contravariant tensor of rank two is given by (3.8). Let’s now
look at other tensor fields and extend our results for a general tensor field.

Scalar field

Let φ be a scalar field. Then, it transforms as

φ(x) = φ(x),

and by Taylor expanding:

φ(x) = φ(xa + εXa) = φ(x) + εXa∂aφ+O
(
ε2
)
.

By equation (3.7) we have

LXφ = lim
ε→0

φ(x)− φ(x)

ε
= lim
ε→0

φ(x) + εXa∂aφ− φ(x) +O
(
ε2
)

ε
= Xa∂aφ. (3.14)

Contravariant vector field

Let T a be a contravariant vector field. The transformation law is

T a(x) =
∂xa

∂xb
T b(x) = (δab + ε∂bX

a)T b = T a + εT b∂bX
a,

and by Taylor expanding

T a(x) = T a(xb + εXb) = T a(x) + εXb∂bT
a +O

(
ε2
)
.

Hence, by (3.7)

LXT
a = lim

ε→0

T a(x)− T a(x)

ε
= Xb∂bT

a − T b∂bXa = [X,T ]a. (3.15)

Conveniently, the Lie derivative of a contravariant vector field T with respect to the contravariant
vector field X is their Lie bracket [X,T ].

Covariant vector field

First, we rewrite the transformation law (3.3):

xa = xa + εXa,

from which it follows that

∂xb

∂xa
= δba − ε∂aXb = δba − ε

∂xc

∂xa
∂cX

b = δba − ε(δca − εXc)∂cX
b = δba − ε∂aXb +O

(
ε2
)
.
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Chapter 3 3.3. Covariant differentiation and affine connection

Now, let Ta be a covariant vector field. The transformation law is

T a(x) =
∂xb

∂xa
Tb(x) = Ta − εTb∂aXb +O

(
ε2
)
.

We also have
Ta(x) = Ta(xb + εXb) = Ta(x) + εXb∂bTa +O

(
ε2
)
.

Then, it follows that

LXTa = lim
ε→0

T (x)− T (x)

ε
= Xb∂bTa + Tb∂aX

b. (3.16)

General tensor field

We generalize (3.15) and (3.16) to write the Lie derivative of a general tensor field T a...b... . First,
we note that there will be a term like

+Xc∂cT
a...
b...

independent of the type of the tensor field T a...b... . Next, from (3.15) we can see that every
contravariant index picks up a term like

−T c...b... ∂cX
a.

Finally, from (3.16) we see that every covariant index picks up a term

+T a...c... ∂bX
c.

Then, we can write the Lie derivative of T a...b... :

LXT
a...
b... = Xc∂cT

a...
b... − T c...b... ∂cX

a − · · ·+ T a...c... ∂bX
c + . . . (3.17)

3.3 Covariant differentiation and affine connection

We now want to define a limiting process which reduces to ordinary differentiation with respect
to Cartesian coordinates in Euclidean space, but still retains its tensorial property. We’ve
already seen something of the form ∂bX

a does not transform as a tensor, since we evaluate
the vector field at different points on the manifold. To get around this, we introduce parallel
transport.

3.3.1 Parallel transport

Consider a covariant vector field Xa(x). Let points P and Q have coordinates xa and xa + dxa.
We know that

Xa(x+ dx)−Xa(x) = dXa = ∂jXi dx
j (3.18)

is not a tensor since the two terms on the left hand side are evaluated at different points. Suppose
we somehow “parallel transport”Xa(x) from P toQ, such that atQ is has componentsXa+δXa.
Now, we may compare the two vectors defined at the same point:

Xa(x+ dx)− (Xa(x) + δXa)

∣∣∣∣
Q

= dXa − δXa ≡ ∇bXa dx
b , (3.19)

where we defined the covariant derivative of a covariant vector field ∇bXa. Since the two terms
on the left hand side are defined at the same point, it follows that the covariant derivative
transforms as a tensor.
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Chapter 3 3.3. Covariant differentiation and affine connection

Note that all we’ve done so far was to claim that some “parallel transport” procedure exists
such that the components Xa + δXa evaluated at Q are that of a vector parallel (in some sense)
to the one with components Xa evaluated at P. We still need to define what this parallel
transport procedure is.

In Euclidean space with Cartesian coordinates, parallel transport should do nothing. This
is not surprising, as the ordinary derivative ∂aXa transforms as a tensor in such coordinates.
Then, suppose our manifold is Euclidean and let (ya) be Cartesian coordinates. Denote the
components of our vector field by Ya in these coordinates. Then,

Ya =
∂xb

∂ya
Xb, Xa =

∂yb

∂xa
Xb. (3.20)

With parallel displacement, δYa = 0. Hence,

δXa = δ

(
∂yb

∂xa
δYb

)
= δ

(
∂yb

∂xa

)
Yb =

∂2yb

∂xa∂xc
dxc Yb. (3.21)

Substituting back for Yb:

δXa =
∂2yb

∂xa∂xc
dxc

∂xd

∂yb
Xd = Γdac dx

cXd, (3.22)

where

Γdac =
∂2yb

∂xa∂xc
∂xd

∂yb
(3.23)

in Euclidean space. This motivates us to define δXa in any manifold as some bilinear form of
Xa and dxc with coefficients Γabc so that δXb = ΓabcXa dx

c.
The covariant derivative of a covariant vector field is given by

∇bXa = ∂bXa − ΓcabXc. (3.24)

As a final note, what we’re doing with parallel transport is simply taking into account the change
in the basis vectors going from point P to Q. The tangent spaces at these two points are in
general different from each other, which is the main reason why we can’t compare vectors living
at distinct points. By parallel transport, we express the components of the vector at P in terms
of the new basis at Q.

3.3.2 Affine connection

Demanding the covariant derivative transform as a (0, 2) tensor yields the transformation law
for Γcab:

Γcab =
∂xi

∂xa
∂xj

∂xb
∂xc

∂xk
Γkij +

∂2xk

∂xa∂xb
∂xc

∂xk
. (3.25)

Any object Γcab with such transformation property is called an affine connection. It is easy to
show that an equivalent transformation law is

Γcab =
∂xi

∂xa
∂xj

∂xb
∂xc

∂xk
Γkij −

∂xk

∂xb
∂x`

∂xa
∂2xc

∂x`∂xk
. (3.26)

3.3.3 Covariant derivatives of tensors

Consider a scalar field φ. It is obviously unaffected by parallel transport, so δφ = 0. Hence, we
have

∇aφ = ∂aφ, (3.27)
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which we already know transforms as a type (0, 1) tensor.
Now, consider a contravariant vector field Aa. We can construct a scalar by contraction

BaA
a. Then, we know

0 = δ(AaBa) = AaδBa +BaδA
a ⇒ BaδA

a = −AaΓcabBc dx
b . (3.28)

Since Ba is arbitrary, it follows that

δAa = −ΓabcA
b dxc . (3.29)

Hence,
∇cAa dxc = dAa − δAa = ∂cA

a + ΓabcA
b dxc . (3.30)

This defines the covariant derivative for a contravariant vector field:

∇cAa = ∂cA
a + ΓabcA

b. (3.31)

Similarly, for a tensor field T ab , consider the parallel displacement of the scalar T abA
bBa, from

which it follows that
∇cT ab = ∂cT

a
b + ΓadcT

d
b − ΓdbcT

a
d . (3.32)

Covariant differentiation is obviously linear. We can check that is it Leibniz. Let Ca = AabB
b:

∇cCa = ∂cC
a + ΓabcC

b

= ∂c
(
AabB

b
)

+ ΓabcA
b
dB

d

= (∂cA
a
b )Bb +Aab∂cB

b + ΓabcA
b
dB

d

= Aab
(
∂cB

b + ΓbdcB
d
)
−AabΓbdcB

d + ΓabcA
b
dB

d + (∂cA
a
b )Bb

= Aab
(
∇cBb

)
+Bb

(
∂cA

a
b − ΓdbcA

a
d + ΓadcA

d
b

)
= Aab

(
∇cBb

)
+ (∇cAab )Bb.

(3.33)

Finally, note that the difference of two affine connections is a tensor since the inhomogeneous
terms cancel. The anti-symmetric part of Γabc is called the torsion tensor :

T abc = Γabc − Γacb. (3.34)

If the torsion tensor vanishes, the connection is symmetric in its lower indices.
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