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1 Maths: Derivation

Let M be an n X n matrix with components M;; and inverse M ~! with components M%¥, such
that
S0 My = b (L
J
We are interested in the variation 6 det M. In terms of 0M;;, this is

6detM
§det M = Z 8M” M;;. (1.2)
One expression for det M is
det M = Z sgn(m HMk,r(k), (1.3)
TES,

where 7 are permutations and S, is the symmetric group of degree n. Then,

0
ﬂ—)aMij <1;[ Mkw(k)) = Z sgn(7m) 8 (i )HM’W (1.4)

TESy k#i

Odet M
= sgn
or, ~ 2

Now, use equation (L.1)) to substitute for ¢;,(;:
Odet M _
oM Z sgn(m (Z Mm@)) HMkw(k) = ZMjgl Z sgn(m) HMk‘zr(k)le(i)~
v TSy ki 0 wESy ki
(1.5)

The trick here is to separate the sum over ¢ into two parts: ¢ = ¢ and £ # i. The £ = i part gives

Mj_i1 Z sgn() H M (1) Mir (i) = Mﬁl Z sgn(m) HM,W(;C) = Mﬁl det M. (1.6)
k

TESn ki TESn
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The ¢ # i part is
ZM]? Z Sgn(W)HMkn(k)Men(i) = ZM; Z sgn(m) H Mior (i) Mim oy Min(iy, (1.7)

00 TES, ki (i TES, k#0,i

where we separated the /" term from product. Now, here is the key point: the expression is
symmetric under the exchange (i) <+ m(£) due to the My Mr(;) term.

For any 7 € S,, with sgn(7) = +1, we can construct a unique «’ € S,, with sgn(z’) = —1 by
setting
w() j=1i,
©(j) =< 7n(i) j=4, (1.8)
7(j) otherwise.

Moreover, the set of all 7’ is the set of all odd permutations of degree n. Hence, equation ([1.7))
is identically zero. This gives the result
ddet M
OM;;

=M;'det M = §detM =detM > M;'6M;;. (1.9)

i
2 Applications to GR

2.1 Covariant divergence

Consider the metric g, with inverse g"”. Let g = |det g, |. Then, we have

09 = 99" 09 (2.1)
In particular, this implies
0
1 = =0 G = 99" OrGp- (2.2)
G
The Levi-Civita connection I'¥ | obeys
aAgW = F#W)\ + Fy#)\. (23)

Using these, we can obtain a useful expression for the covariant divergence of a vector field
A
vVt =0,V¥ + F“W\V . (2.4)
Taking a closer look at the connection:

\;g@k\/g. (2.5)

1
FM}L)\ = glwruﬂx\ = 59#”8/\9}1«1/ =

Substituting this to the expression above yields the result:

B L H
V.V _\/gau(\/gv ). (2.6)

2.2 Covariant Laplacian of scalar

The Laplacian of a scalar is defined covariantly as

¢ = VIV, 0 = ¢""V, V6. (2.7)
Noting that the metric is covariantly constant, i.e. Vg, = 0, equation (2.6) implies
v v 1 1%
9"V, NV, =V, 9" 0,0 = ﬁau(\/gg# 0,9). (2.8)
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2.3 Minimal coupling: Klein-Gordon

The special relativistic Klein-Gordon action is
Sl0] = [ d's (40,006 — %] (29)
with metric convention 7 = diag(—1,+1,+1,+1). The resulting equation of motion is
(0, —m*)¢ =0, (2.10)
where U,) = n*¥0,,0,. Now, we write generally covariant action:
Sl6.90) = [ @' V-9 0,000 — sm? ] (2.11)
Varying this action with respect to ¢ yields
68 = — / d*z \/g[g" 0,60,0¢ + m*$e)]
= /d4:z: ﬁ[\}gﬁu(\/ﬁgwam) —m?%¢| 66 + surface term (2.12)
= /d4m V9[Ogé — m*¢]d¢ =0,
where we used equation going from line 2 to 3. Hence, the covariant equation of motion is
(Og —m*)¢ = 0. (2.13)

2.4 Minimal coupling: Maxwell

Vacuum special relativistic Maxwell action is
1 4 nv 1 4 po, v
S[4,] = ~37 d'x F*"F,, = ~1 dxntn"P FopF., (2.14)

with field tensor F,, = 9,4, — 0,A,. The correct way to proceed is to keep the field tensor
definition fixed, i.e. don’t replace 9 — V. Instead, simply consider the action

Sl =~ [ Vid'z 9" 5" FusF. (2.15)
Varying the action with respect to A,:
5S = —% / Vgdtz g"*g"P Fo50F,,
_ _% / JGde g g0 Fap(9,5 A, — 0,6A,,)
=— / Vadtz g"g"PF,50,0A, (2.16)

= /d4x Oy (@g‘“"g”ﬁFaﬁ)éAu + surface term

: / d*a 0,(\/gF" )5 A, = 0.
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The resulting equation of motion is

8, (/gF"™) = 0. (2.17)

At first glance this doesn’t look equivalent to V,F'*” = 0, which is what we may have expected.
It turns out that they are equal due to antisymmetry of F),,:

VuF* = 9, F" + T | FA 4TV \Fr, (2.18)

The last term vanishes since I"’M/\ is symmetric in p, and F** antisymmetric. Hence, we have
1
V= ﬁau(\/ng“”) =0 & Ou(JgF*)=0. (2.19)

Note. Using Euler-Lagrange equation to obtain equations of motion instead of varying the
action directly is a waste of time and effort. If you don’t believe me, have a go at the above
derivation.
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