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1 Maths: Derivation

Let M be an n× n matrix with components Mij and inverse M−1 with components M ij , such
that ∑

j

M−1ij Mjk = δik. (1.1)

We are interested in the variation δ detM . In terms of δMij , this is

δ detM =
∑
ij

∂ detM

∂Mij
δMij . (1.2)

One expression for detM is

detM =
∑
π∈Sn

sgn(π)
∏
k

Mkπ(k), (1.3)

where π are permutations and Sn is the symmetric group of degree n. Then,

∂ detM

∂Mij
=
∑
π∈Sn

sgn(π)
∂

∂Mij

(∏
k

Mkπ(k)

)
=
∑
π∈Sn

sgn(π)δjπ(i)
∏
k 6=i

Mkπ(k). (1.4)

Now, use equation (1.1) to substitute for δjπ(i):

∂ detM

∂Mij
=
∑
π∈Sn

sgn(π)

(∑
`

M−1j` M`π(i)

)∏
k 6=i

Mkπ(k) =
∑
`

M−1j`

∑
π∈Sn

sgn(π)
∏
k 6=i

Mkπ(k)M`π(i).

(1.5)
The trick here is to separate the sum over ` into two parts: ` = i and ` 6= i. The ` = i part gives

M−1ji
∑
π∈Sn

sgn(π)
∏
k 6=i

Mkπ(k)Miπ(i) = M−1ji
∑
π∈Sn

sgn(π)
∏
k

Mkπ(k) = M−1ji detM. (1.6)
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The ` 6= i part is∑
6̀=i

M−1j`

∑
π∈Sn

sgn(π)
∏
k 6=i

Mkπ(k)M`π(i) =
∑
6̀=i

M−1j`

∑
π∈Sn

sgn(π)
∏
k 6=`,i

Mkπ(k)M`π(`)M`π(i), (1.7)

where we separated the `th term from product. Now, here is the key point: the expression is
symmetric under the exchange π(i)↔ π(`) due to the M`π(`)M`π(i) term.

For any π ∈ Sn with sgn(π) = +1, we can construct a unique π′ ∈ Sn with sgn(π′) = −1 by
setting

π′(j) =


π(`) j = i,

π(i) j = `,

π(j) otherwise.

(1.8)

Moreover, the set of all π′ is the set of all odd permutations of degree n. Hence, equation (1.7)
is identically zero. This gives the result

∂ detM

∂Mij
= M−1ji detM ⇒ δ detM = detM

∑
ij

M−1ji δMij . (1.9)

2 Applications to GR

2.1 Covariant divergence

Consider the metric gµν with inverse gµν . Let g = |det gµν |. Then, we have

δg = ggµνδgµν (2.1)

In particular, this implies

∂λg =
∂g

∂gµν
∂λgµν = ggµν∂λgµν . (2.2)

The Levi-Civita connection Γµνλ obeys

∂λgµν = Γµνλ + Γνµλ. (2.3)

Using these, we can obtain a useful expression for the covariant divergence of a vector field

∇µV µ = ∂µV
µ + ΓµµλV

λ. (2.4)

Taking a closer look at the connection:

Γµµλ = gµνΓνµλ =
1

2
gµν∂λgµν =

1
√
g
∂λ
√
g. (2.5)

Substituting this to the expression above yields the result:

∇µV µ =
1
√
g
∂µ(
√
gV µ). (2.6)

2.2 Covariant Laplacian of scalar

The Laplacian of a scalar is defined covariantly as

�φ = ∇µ∇µφ = gµν∇µ∇µφ. (2.7)

Noting that the metric is covariantly constant, i.e. ∇λgµν = 0, equation (2.6) implies

gµν∇µ∇µφ = ∇µgµν∂νφ =
1
√
g
∂µ(
√
ggµν∂νφ). (2.8)
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2.3 Minimal coupling: Klein-Gordon

The special relativistic Klein-Gordon action is

S[φ] =

∫
d4x

[
− 1

2η
µν∂µφ∂νφ− 1

2m
2φ2
]
, (2.9)

with metric convention η = diag(−1,+1,+1,+1). The resulting equation of motion is

(�η −m2)φ = 0, (2.10)

where �η = ηµν∂µ∂ν . Now, we write generally covariant action:

S[φ, gµν ] =

∫
d4x
√
g
[
− 1

2g
µν∂µφ∂νφ− 1

2m
2φ2
]

(2.11)

Varying this action with respect to φ yields

δS = −
∫
d4x
√
g
[
gµν∂νφ∂µδφ+m2φδφ

]
=

∫
d4x
√
g

[
1
√
g
∂µ(
√
ggµν∂νφ)−m2φ

]
δφ+ surface term

=

∫
d4x
√
g
[
�gφ−m2φ

]
δφ = 0,

(2.12)

where we used equation (2.8) going from line 2 to 3. Hence, the covariant equation of motion is(
�g −m2

)
φ = 0. (2.13)

2.4 Minimal coupling: Maxwell

Vacuum special relativistic Maxwell action is

S[Aν ] = −1

4

∫
d4xFµνFµν = −1

4

∫
d4x ηµαηνβFαβFµν , (2.14)

with field tensor Fµν = ∂µAν − ∂νAµ. The correct way to proceed is to keep the field tensor
definition fixed, i.e. don’t replace ∂ → ∇. Instead, simply consider the action

S[Aν , gµν ] = −1

4

∫
√
g d4x gµαgνβFαβFµν . (2.15)

Varying the action with respect to Aν :

δS = −1

2

∫
√
g d4x gµαgνβFαβδFµν

= −1

2

∫
√
g d4x gµαgνβFαβ(∂µδAν − ∂νδAµ)

= −
∫
√
g d4x gµαgνβFαβ∂µδAν

=

∫
d4x ∂µ

(√
ggµαgνβFαβ

)
δAν + surface term

= .

∫
d4x ∂µ(

√
gFµν)δAν = 0.

(2.16)
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The resulting equation of motion is

∂µ(
√
gFµν) = 0. (2.17)

At first glance this doesn’t look equivalent to ∇µFµν = 0, which is what we may have expected.
It turns out that they are equal due to antisymmetry of Fµν :

∇µFµν = ∂µF
µν + ΓµµλF

λν + ΓνµλF
µλ. (2.18)

The last term vanishes since Γνµλ is symmetric in µλ, and Fµλ antisymmetric. Hence, we have

∇µFµν =
1
√
g
∂µ(
√
gFµν) = 0 ⇔ ∂µ(

√
gFµν) = 0. (2.19)

Note. Using Euler-Lagrange equation to obtain equations of motion instead of varying the
action directly is a waste of time and effort. If you don’t believe me, have a go at the above
derivation.
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